817 research outputs found

    Large deviations for many Brownian bridges with symmetrised initial-terminal condition

    Get PDF
    Consider a large system of NN Brownian motions in Rd\mathbb{R}^d with some non-degenerate initial measure on some fixed time interval [0,β][0,\beta] with symmetrised initial-terminal condition. That is, for any ii, the terminal location of the ii-th motion is affixed to the initial point of the σ(i)\sigma(i)-th motion, where σ\sigma is a uniformly distributed random permutation of 1,...,N1,...,N. Such systems play an important role in quantum physics in the description of Boson systems at positive temperature 1/β1/\beta. In this paper, we describe the large-N behaviour of the empirical path measure (the mean of the Dirac measures in the NN paths) and of the mean of the normalised occupation measures of the NN motions in terms of large deviations principles. The rate functions are given as variational formulas involving certain entropies and Fenchel-Legendre transforms. Consequences are drawn for asymptotic independence statements and laws of large numbers. In the special case related to quantum physics, our rate function for the occupation measures turns out to be equal to the well-known Donsker-Varadhan rate function for the occupation measures of one motion in the limit of diverging time. This enables us to prove a simple formula for the large-N asymptotic of the symmetrised trace of eβHN{\rm e}^{-\beta \mathcal{H}_N}, where HN\mathcal{H}_N is an NN-particle Hamilton operator in a trap

    Using graph-kernels to represent semantic information in text classification

    Get PDF
    Most text classification systems use bag-of-words represen- tation of documents to find the classification target function. Linguistic structures such as morphology, syntax and semantic are completely ne- glected in the learning process. This paper proposes a new document representation that, while includ- ing its context independent sentence meaning, is able to be used by a structured kernel function, namely the direct product kernel. The proposal is evaluated using a dataset of articles from a Portuguese daily newspaper and classifiers are built using the SVM algorithm. The results show that this structured representation, while only partially de- scribing document’s significance has the same discriminative power over classes as the traditional bag-of-words approach

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure

    From Vicious Walkers to TASEP

    Get PDF
    We propose a model of semi-vicious walkers, which interpolates between the totally asymmetric simple exclusion process and the vicious walkers model, having the two as limiting cases. For this model we calculate the asymptotics of the survival probability for mm particles and obtain a scaling function, which describes the transition from one limiting case to another. Then, we use a fluctuation-dissipation relation allowing us to reinterpret the result as the particle current generating function in the totally asymmetric simple exclusion process. Thus we obtain the particle current distribution asymptotically in the large time limit as the number of particles is fixed. The results apply to the large deviation scale as well as to the diffusive scale. In the latter we obtain a new universal distribution, which has a skew non-Gaussian form. For mm particles its asymptotic behavior is shown to be ey22m2e^{-\frac{y^{2}}{2m^{2}}} as yy\to -\infty and ey22mym(m1)2e^{-\frac{y^{2}}{2m}}y^{-\frac{m(m-1)}{2}} as yy\to \infty .Comment: 37 pages, 4 figures, Corrected reference

    An ergodic theorem of a parabolic Anderson model driven by Lévy noise

    Get PDF
    In this paper, we study an ergodic theorem of a parabolic Andersen model driven by Lévy noise. Under the assumption that A = (a(i, j))i,j∈S is symmetric with respect to a σ-finite measure gp, we obtain the long-time convergence to an invariant probability measure νh starting from a bounded nonnegative A-harmonic function h based on self-duality property. Furthermore, under some mild conditions, we obtain the one to one correspondence between the bounded nonnegative A-harmonic functions and the extremal invariant probability measures with finite second moment of the nonnegative solution of the parabolic Anderson model driven by Lévy noise, which is an extension of the result of Y. Liu and F. X. Yang

    Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers

    Get PDF
    A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected
    corecore