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Abstract In this paper, we study an ergodic theorem of a parabolic Andersen
model driven by Lévy noise. Under the assumption that A = (a(i, j))i,j∈S

is symmetric with respect to a σ-finite measure π, we obtain the long-time
convergence to an invariant probability measure νh starting from a bounded
nonnegative A-harmonic function h based on self-duality property. Further-
more, under some mild conditions, we obtain the one to one correspondence
between the bounded nonnegative A-harmonic functions and the extremal
invariant probability measures with finite second moment of the nonnegative
solution of the parabolic Anderson model driven by Lévy noise, which is an
extension of the result of Y. Liu and F. X. Yang.

Keywords Parabolic Anderson model, ergodic theorem, invariant measure,
Lévy noise, self-duality
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1 Introduction

The parabolic Anderson model has long been of interest to physicists and
mathematicians. It describes the entrapment of electrons of crystals with
impurities originally introduced by physicist Anderson at 1958 [2]. It also
presents the relevant models for chemical kinetics and population dynamics (see
[3,12] for more background and applications). On the other hand, the rigorous
analysis to some real world phenomenon, for example, intermittency effect has
provided mathematical challenges, and often requires some new mathematical
ideas and techniques. References [13,14,17] and the survey [12] provided the
recent interesting progress on the mathematical aspects of parabolic Anderson
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model.
As a mathematical object, the parabolic Anderson model has led to

substantial research, which relates to some other interesting topics, such as
the spectrum of random Schrödinger operator [18], the Lyapunov exponent for
infinite dimensional random dynamical system [7–9,11], and the Feynman-Kac
formula [15]. It can be regarded as a linear interacting particle system in the
sense of Liggett’s book [21, Chapter IX] also. The ergodic theory of stochastic
interacting systems, for instance, characterizing all invariant probability
measures, is one of the important themes of the research on this field. It is
hoped that this would present a better understanding of the phenomenon of
phase transition. The solutions of related problems has led in turn to the new
probabilistic methods and tools, such as duality theory and coupling method.

In this paper, inspired by Liggett, Spitzer, and Shiga et al. (see [19,20,22,29,
30]), we are concerned with characterizing the invariant probability measures of
a parabolic Anderson model driven by Lévy noise under some mild conditions.
The specific model is described as the following, of which the sample Lyapunov
exponent was researched by Furuoya and Shiga in [11].

Let S be a countable set, and let A = (a(i, j))i,j∈S be an S × S real matrix
satisfying

a(i, j) � 0 for i �= j,
∑

j∈S

a(i, j) = 0, and sup
i∈S

|a(i, i)| <∞, (1.1)

i.e., A is an infinitesimal generator of a continuous time Markov chain on S.
Let π = (πi)i∈S be a σ-finite measure on S, A is symmetric with respect to π,
i.e.,

πia(i, j) = πja(j, i), ∀ i, j ∈ S. (1.2)

Let (Y (t))t�0 be a 1-dimensional Lévy process with a characteristic exponent
ψ(z),

ψ(z) = −α
2

2
z2 + iβz +

∫

R\{0}
(eizu − 1 − izuI{|u|<1/2})ρ(du), (1.3)

where ρ(du) is a Radon measure on R \ {0} such that
∫

R\{0}
min(u2, 1)ρ(du) <∞. (1.4)

Now, let us consider the following linear interacting diffusion on S, which is
a parabolic Andersen model driven by Lévy processes:

dXi(t) = κ
∑

j∈S

a(i, j)Xj(t)dt+Xi(t−)dYi(t), i ∈ S, (1.5)

where (Yi(t))t�0 (i ∈ S) are independent copies of (Y (t))t�0. The integral
∫ t+

0
Xi(s−)dYi(s)
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is understood as follows (see [16]). Consider the Lévy-Itô decomposition of
(Yi(t))t�0, i ∈ S,

Yi(t) = αBi(t) + βt+
∫ t+

0

∫

{|u|<1/2}
uÑi(dsdu) +

∫ t+

0

∫

{|u|�1/2}
uNi(dsdu),

(1.6)
where {Bi(t)t�0, i∈S} are independent standard Brownian motions,
{Ni(dsdu), i ∈ S} are independent Poisson random measures on [0,∞)×R\{0}
with intensity measure dsρ(du), and

Ñi(dsdu) = N(dsdu) − dsρ(du), i ∈ S,

are the martingale measures. Then,
∫ t+

0
Xi(s)dYi(s) = α

∫ t+

0
Xi(s)dBi(ds) + β

∫ t

0
Xi(s)ds

+
∫ t+

0

∫

{|u|<1/2}
Xi(s−)uÑi(dsdu)

+
∫ t+

0

∫

{|u|�1/2}
Xi(s−)uNi(dsdu). (1.7)

Especially, we investigate a special form of (1.5) in this paper:

dXi(t) = κ
∑

j∈S

a(i, j)Xj(t)dt+ αXi(t)dBi(t) +
∫

{|u|<1/2}
uXi(t−)Ñi(dtdu)

+
∫

{|u|�1/2}
uXi(t−)Ni(dtdu) −

∫

{|u|�1/2}
uXi(t−)ρ(du)dt

= κ
∑

j∈S

a(i, j)Xj(t)dt+ αXi(t)dBi(t) +
∫

R\{0}
uXi(t−)Ñi(dtdu). (1.8)

Our main purposes in this paper are constructing the one-to-one
correspondence between the A-bounded nonnegative harmonic functions and
the extremal invariant probability measures of the nonnegative solution of (1.8)
(see Theorem 2.9 in Section 2).

In [6], the parabolic Anderson model driven by Brownian motions on S
(A was assumed to be doubly stochastic) and a subclass of linear interacting
system constructed through Poisson point processes on Z

d (A was assumed
to be translation invariant) were studied by Cox, Klenke and Perkins. They
showed the long-time convergence to an invariant measure νθ starting from
a constant initial state θ by the self-duality of linear system introduced in
[21]. Moreover, they presented that the convergence to the invariant probability
measure νθ held for a broad class of initial distributions denoted by Mθ. In [25]
or [33], the authors constructed the one-to-one correspondence between the
A-bounded nonnegative harmonic functions and the extremal invariant
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probability measures of the nonnegative solution of the parabolic Anderson
model driven by Brownian motions on S by using the self-duality property, the
second moment estimates, and the truncation technique, if A was symmetric
and transient and the diffusion parameter was less than a threshold
([25, Theorem 2.5]). Furthermore, if A was doubly stochastic and satisfied
the so-called Case I (see the definition of Case I in [29]), they proved that
the system locally died out independent of the diffusion parameter through a
comparison theorem in [4] ([25, Theorem 2.9]).

Now, we will generalize the approaches in [25] or [33] to (1.8), the parabolic
Anderson model driven by Lévy noise. Here, we extend slightly that A is
symmetric with respect to a σ-finite measure π (see (1.2)). Actually, in [25] or
[33], A is only assumed to be symmetric, i.e., a(i, j) = a(j, i). The self-duality
property is the heart of our proofs. Although this property of linear systems
in sense of Liggett’s book ([21]) was shown, and Cox et al. only claimed it held
for the parabolic Anderson model driven by Brownian motions if A was doubly
stochastic in [6], we are unable to get a quick conclusion from their results,
which is suitable for our case. Hence, for the completeness of this paper, we
will verify the self-duality property in Appendix briefly. On the other hand, it
seems difficult to extend [25, Theorem 2.9] to (1.8), because it is unclear for us
whether the comparison theorem in [4] is available for Lévy noise or not.

The remainder of this paper is organized as follows. The main results
(Theorems 2.8 and 2.9) are given in Section 2. At the same time, some
preliminary propositions, necessary notations, assumptions, and conditions are
presented in Section 2, too. In Section 3, the proofs of the main theorems and
lemmas are shown. To be self-contained, we give some lemmas of the proofs of
Propositions 2.4 and 2.6 in Appendix. The proof of the self-duality property is
shown in Appendix, too.

2 Setup and main results

We set

Lp(γ) =
{
x ∈ [0,∞)S

∣∣∣ ‖x‖p
γ,p =

∑

i∈S

γix
p
i <∞

}
,

where p � 1, γ = {γi}i∈S ∈ [0,∞)S is a strictly positive, summable reference
sequence (i.e.,

∑
i∈S γi <∞) satisfying for some constant Γ > 0,

∑

i∈S

γi|a(i, j)| � Γγj, j ∈ S. (2.1)

Moreover, we need the following conditions on Lévy’s measure ρ(du).

Condition 2.1 ρ((−∞, 0)) = 0.

Condition 2.2 ∫

(1,∞)
u2ρ(du) <∞.
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Condition 2.3 For some constant K, ρ{u | u > K} = 0.

Similar to [11, Condition [A]], Conditions 2.1 and 2.2 guarantee that there
exists a unique nonnegative solution in L2(γ) with Xi(0) � 0, i ∈ S.

Remark 2.1 In fact, in [11], Furouya and Shiga studied the sample Lyapunov
exponent in the sense of L1(γ) solution. However, because we consider the
ergodic theory in the L2(γ) framework in the present paper, Condition 2.2 is
stronger than the corresponding one (1.6) in [11].

Proposition 2.4 Assume that inequality (2.1), Conditions 2.1 and 2.2 hold.
Let X(0) = {Xi(0), i ∈ S} be an F0-measurable random vector in L2(γ) a.s.
Then (1.5) has a unique strong solution in L2(γ), and satisfies that

1) if E(‖X(0)‖2
γ,2) <∞, then E(‖X(t)‖2

γ,2) <∞, ∀ t > 0;
2) (X(t))t�0 is a Feller process;
3) (1.5) has a unique nonnegative L2(γ) solution, if X(0) ∈ L2(γ) and

Xi(0) � 0 for all i ∈ S;
4) for any i ∈ S, Xi(·) ∈ D[0,∞; R] a.s., denote by D[0,∞; R] the space of

functions f : [0,∞) → R which are right-continuous and admit left-hand limits
for every t > 0.

Proof Since Condition 2.2 implies that
∫

(1,∞)
uρ(du) <∞,

and E(‖X(0)‖2
γ,2) <∞ implies E(‖X(0)‖γ,1) <∞, this means that if

E(‖X(0)‖2
γ,2) <∞,

then there is a unique nonnegative L1(γ) pathwise solution of (1.5), which is a
Feller process (or see Lemma A5 in Appendix), by [11, Theorem 2.1, Corollary
2.1]. Furthermore, by Lemma A4 in Appendix, if E(‖X(0)‖2

γ,2) < ∞, then
E(‖X(t)‖2

γ,2) < ∞, ∀ t > 0. And by Lemma A6 in Appendix, we have 4).
Hence, the proposition holds. �

Let ΞF be the set of x ∈ [0,∞)S such that xj = 0 for all but finitely many
j ∈ S, and let L∞,+(S) be the set of all bounded nonnegative functions on S.
Let X(t, x) be the solution of (1.5) with deterministic initial data x ∈ L2(γ).

Proposition 2.5 (Self-duality) For any x ∈ L∞,+(S) and x̃ ∈ ΞF , we have

〈X(t, x), x̃〉π d= 〈X(t, x̃), x〉π, (2.2)

where d= denotes the equality in distribution and 〈x, y〉π =
∑

i∈S xiyiπi.

Remark 2.2 The proof of the self-duality property is provided in Appendix.
Through this proof, we know that X(t) ∈ L2(γ) guarantees (2.2) make sense.
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Denote by {Tt}t�0 the Feller semigroup of {X(t)}t�0, where Tt satisfies
Ttf(x) = Exf(X(t)) for any bounded Borel-measurable function f on L2(γ).
Define the continuous time kernel at by

at(i, j) =
∞∑

n=0

tn

n!
a(n)(i, j),

where a(n) is the n-th iterate of a, i.e.,

a(n) = a× a× · · · × a︸ ︷︷ ︸
n

.

For φ : S → [0,∞), define

atφ(i) =
∑

j∈S

at(i, j)φj , φat(j) =
∑

i∈S

φiat(i, j),

and for φ,ϕ : S → [0,∞), define

〈φ,ϕ〉 =
∑

i∈S

φiϕi.

Let P be the set of probability measures on L2(γ), and let I be the set
of probability measures which are invariant for {X(t)}t�0, i.e., I = {μ ∈ P |
T ∗

t μ = μ for t � 0}, where T ∗
t μ satisfies

∫
f(x) T ∗

t μ(dx) =
∫
Ttf(x) μ(dx)

for any bounded Borel-measurable function f on L2(γ). Iex denotes the set of
the extreme point of I . We set H = {h(·) | h is a bounded function on S, h(i)
� 0,

∑
j∈S a(i, j)h(j) = 0}. For ν, μ ∈ P, let ν ⊗ μ be the product measure of

ν and μ.
Without loss of generality, we set κ = 1.
Suppose that h ∈ H is fixed, and {X(t)}t�0 is the solution of (1.8) with

initial state X(0) = h. For any x̃ ∈ ΞF , Proposition 2.5 implies that

〈X(t, h), x̃〉π d= 〈h,X(t, x̃)〉π. (2.3)

Then we have the following result.

Proposition 2.6 For h ∈ H , 〈h,X(t, x̃)〉π is a càdlàg square-integrable
martingale.

The proof of Proposition 2.6 is given in Section 3. From Proposition 2.6,
the right-hand side of (2.3) is a nonnegative martingale, and hence converges
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almost surely as t→ ∞. Therefore, the left-hand side of (2.3) must converge as
t→ ∞. It follows that there is a probability measure νh on L2(γ) such that

L [X(t)] ⇒ νh, t→ ∞, (2.4)

where L denotes the law of random variable and ⇒ denotes the weak
convergence of probability measure. By (2.3) and (2.4), we have

Ex̃(e−〈h,X(t,x̃)〉π ) = Eh(e−〈X(t,h),x̃〉π ) →
∫

e−〈x,x̃〉πνh(dx), t→ ∞. (2.5)

For h ∈ H , we define Mh to be the set of probability measures ν on L2(γ)
such that

sup
k

∫
x2

kν(dx) <∞, (2.6)

lim
t→∞

∫
(atx(k) − h(k))2ν(dx) = 0, k ∈ S. (2.7)

Let

J2 =
{
ν ∈ P

∣∣∣ sup
k

∫
x2

kν(dx) <∞
}
.

Then we have the following result.

Proposition 2.7 Let h ∈ H and ν ∈ Mh. If L [X(0)] = ν and x̃ ∈ ΞF , then

〈X(0) − h,X(t, x̃)〉π → 0 (2.8)

in ν ⊗ P x̃-probability as t→ ∞.

Theorem 2.8 If L [X(0)] ∈ Mh, then L [X(t)] ⇒ νh as t→ ∞.

Proposition 2.7 is a main technical result to show Theorem 2.8. Similar to
[6, condition (5.42)], Condition 2.3 is a key assumption to show Proposition 2.7
through [6, Lemma 3.2]. The proofs of Proposition 2.7 and Theorem 2.8 are
similar to those of [6, Proposition 2.1, Theorem 2.3], respectively.

Theorem 2.9 Assume that (at)t�0 is transient and satisfies

G := sup
i∈S

∫ ∞

0

∑

k

at(i, k)at(i, k)dt <∞. (2.9)

Moreover, suppose that πi > 0, i ∈ S, and supi∈S πi <∞. If
(
α2 +

∫
u2ρ(du)

)
G < 1,

then
{I ∩ J2}ex = {νh | h ∈ H }.

Remark 2.3 It seems that the assumption of symmetry of A (see (1.2)) is a
key technical condition in our proofs. In [6], for the parabolic Andersen model



1154 Yong LIU et al.

driven by Brownian motions on S, if A is doubly stochastic, i.e.,
∑

i∈S a(i, j) =
0, Cox et al. obtained the partial result of Theorem 2.8. They only showed that
L [X(t)] ⇒ νθ, if θ is a constant function on S. However, we are not able to
prove Theorems 2.8 and 2.9 under the same assumption as theirs by now.

Remark 2.4 Assumption (2.9) in Theorem 2.9 is also a technical condition,
but it implies some interesting cases. For example, suppose that S = Z

d

(d-dimensional cubic lattice space) and (a(i, j))i,j∈S is transient and satisfies

a(i, j) = a(j, i), a(i, j) = a(0, j − i), i, j ∈ Z
d,

then
sup

i

∫ ∞

0

∑

k

at(i, k)at(i, k)dt = sup
i

∫ ∞

0
a2t(i, i)dt

= sup
i

∫ ∞

0
a2t(0, 0)dt

=
∫ ∞

0
a2t(0, 0)dt

< ∞.

(2.9) is satisfied naturally.
Moreover, if 0 < infi∈S πi � supi∈S πi < ∞ and (a(i, j))i,j∈S is transient,

then

(inf
i
πi)

∫ ∞

0

∑

k

at(i, k)at(i, k)dt � πi

∫ ∞

0

∑

k

at(i, k)at(i, k)dt

=
∫ ∞

0

∑

k

at(i, k)πkat(k, i)dt

� (sup
k
πk)

∫ ∞

0
a2t(i, i)dt,

and hence,

sup
i

∫ ∞

0

∑

k

at(i, k)at(i, k)dt � supk πk

infi πi
sup

i

∫ ∞

0
a2t(i, i)dt. (2.10)

Similarly, we get

sup
i

∫ ∞

0

∑

k

at(i, k)at(i, k)dt � infk πk

supi πi
sup

i

∫ ∞

0
a2t(i, i)dt. (2.11)

Hence, (2.10) and (2.11) yield that

sup
i∈S

∫ ∞

0
at(i, i)dt <∞ ⇐⇒ sup

i∈S

∫ ∞

0

∑

k

at(i, k)at(i, k)dt <∞. (2.12)
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Remark 2.5 Since S is a countable set, A is the generator of a Markov chain,
in general, there exist non-constant bounded nonnegative harmonic functions
of A, for example, the isotropic random walk on a homogeneous tree (see [28]).

Remark 2.6 In [15], for the parabolic Anderson model driven by Brownian
motions on Z

d, if the symmetrized transition kernel of A is transient, Greven
and den Hollander pointed out that there exists a b∗ > 0, such that if the
diffusion parameter α > b∗, then the system locally dies out. We believe that
the similar result holds for (1.8) also, i.e., there is a b∗ > 0, if

α2 +
∫
u2ρ(du) > b∗,

then the system locally dies out. However, we have not got a proof till now.

3 Proofs

3.1 Proofs of Propositions 2.6, 2.7, and Theorem 2.8

Proof of Proposition 2.6 It is easy to check that

〈h,X(t, x̃)〉π = 〈h, x̃〉π + α
∑

i∈S

∫ t

0
πih(i)Xi(s, x̃)dBi(s)

+
∑

i∈S

∫ t

0

∫

R\{0}
uπih(i)Xi(s−, x̃)Ñi(dsdu). (3.1)

By Lemma A7 in Appendix, we have

Ex̃(〈h,X(t, x̃)〉2π) � 〈h, x̃〉2πect <∞,

where c = α2 +
∫
u2ρ(du).

On the other hand, By Lemma A8 in Appendix, 〈h,X(t, x̃)〉π is a càdlàg
process. Therefore, it follows from (3.1) that for x̃ ∈ ΞF , 〈h,X(t, x̃)〉π is a
càdlàg square-integrable martingale. �
Proof of Proposition 2.7 We note that 〈X(t, x̃), 1〉π is a nonnegative càdlàg
square-integrable martingale. By (3.1), we have

〈X(t, x̃), 1〉π = 〈x̃, 1〉π +
∑

i

Mi(t),

where

Mi(t) = α

∫ t

0
πiXi(s, x̃)dBi(s) +

∫ t

0

∫

R\{0}
uπiXi(s−, x̃)Ñi(dsdu),

and the sum converges in L2(γ). {Mi(t)}i∈S are square integrable orthogonal
martingales, with

〈Mi〉t := 〈Mi,Mi〉t =
(
α2 +

∫
u2ρ(du)

) ∫ t

0
π2

iX
2
i (s, x̃)ds.
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〈X(t, x̃), 1〉π has the predictable quadratic variation process At =
∑

i〈Mi〉t. Let
Tn = inf{t | 〈X(t, x̃), 1〉π � n}. We set Zt = 〈X(t, x̃), 1〉π . By Condition 2.3, it
can be shown that for each positive integer n,

E[(ZTn − ZTn−)1{Tn<∞}] <∞.

Then by [6, Lemma 3.2], we have

A∞ =
∑

i

〈Mi〉∞

=
(
α2 +

∫
u2ρ(du)

)∫ ∞

0

∑

i

π2
iX

2
i (s, x̃)ds <∞ a.s. P x̃. (3.2)

Applying Itô’s formula to at−sX(s, x̃)(i), we have

Xi(t, x̃) = atx̃(i) +
∫ t

0

∑

j

at−s(i, j)dM j(s), (3.3)

where

M i(t) = α

∫ t

0
Xi(s, x̃)dBi(s) +

∫ t

0

∫

R\{0}
uXi(s−, x̃)Ñi(dsdu).

Let
Λ = X(0) − h, P = ν ⊗ P x̃,

and let E denote expectation with respect to P. Noting that ν ∈ Mh, we have

C := sup
i

∫
(Λ(i))2ν(dx)

= sup
i

∫
(xi − h(i))2ν(dx)

� 2 sup
i

∫
x2

i ν(dx) + 2 sup
i

∫
h2(i)ν(dx)

<∞. (3.4)

Hence,

sup
i,t

∫
(atΛ(i))2ν(dx) = sup

i,t

∫ (∑

k

at(i, k)Λk

)2

ν(dx)

= sup
i,t

∫ (∑

k

at(i, k)(xk − h(k))
)2

ν(dx)

� sup
i,t

∫ ∑

k

at(i, k)(xk − h(k))2ν(dx)

� sup
i,t

∑

k

at(i, k) sup
k

∫
(xk − h(k))2ν(dx)

= C, (3.5)
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and

E
(∑

i

∫ t

0
(at−sΛ(i))2π2

iX
2
i (s, x̃)ds

)
� C

∫ t

0
Ex̃(〈X(s), 1〉2π)ds <∞. (3.6)

Set
N t

s =
∑

i

∫ s

0
at−rΛ(i)dMi(r), s � t. (3.7)

Then
〈Λ,X(t, x̃)〉π = 〈Λ, atx̃〉π +N t

t . (3.8)

Here, {N t
s, s � t} is a square-integrable martingale under P, and

〈N t〉s := 〈N t, N t〉s =
∫ s

0

∑

i

(at−rΛ(i))2d〈Mi〉r <∞ a.s. P x̃.

First, we will show that

〈Λ, atx̃〉π → 0 in ν ⊗ P x̃-probability as t→ ∞. (3.9)

It is straightforward to check that
∫

〈Λ, atx̃〉2πν(dx) =
∫

〈atΛ, x̃〉2πν(dx)

=
∑

j,k

x̃jx̃kπjπk

∫
(atΛ(j))(atΛ(k))ν(dx)

�
(∑

j

x̃jπ
2
j

[ ∫
(atΛ(j))2ν(dx)

]1/2)2

. (3.10)

Using (2.7), (3.5), and x̃ ∈ ΞF , we can obtain
∫

〈Λ, atx̃〉2πν(dx) → 0, t→ ∞. (3.11)

Hence, (3.9) holds.
Next, let us show that

N t
t → 0 in ν ⊗ P x̃-probability as t→ ∞. (3.12)

To this end, we consider
∫

〈N t〉tν(dx) =
∫ t

0

∑

i

∫
(at−rΛ(i))2ν(dx)d〈Mi〉r

=
∑

i

∫ ∞

0

(
I{r<t}

∫
(at−rΛ(i))2ν(dx)

)
d〈Mi〉r. (3.13)
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Note that
I{r<t}

∫
(at−rΛ(i))2ν(dx) → 0, t→ ∞,

and is bounded by C. By (3.2) and the bounded convergence theorem, we have

P x̃

(
lim
t→∞

∫
〈N t〉tν(dx) = 0

)
= 1. (3.14)

Thus,
P(〈N t〉t > ε′) = Ex̃(ν(〈N t〉t > ε′)) → 0, t→ ∞. (3.15)

Let
τε = inf{s � 0 | 〈N t〉s > ε3}.

Note that {|N t
s|2−〈N t〉s, s � t} is a martingale under P. By the stopping time

theorem, we have
E(|N t

t∧τε
|2) = E(〈N t〉t∧τε).

Then,

P(|N t
t | > ε) � P( sup

0�s�t
|N t

s| > ε)

� P( sup
0�s�t

|N t
s −N t

sI{s<τε}| > 0) + P( sup
0�s�t

|N t
sI{s<τε}| > ε)

� P(〈N t〉t > ε3) +
E(|N t

t∧τε
|2)

ε2

� P(〈N t〉t > ε3) +
E(〈N t〉t∧τε)

ε2

� P(〈N t〉t > ε3) +
ε3

ε2

= P(〈N t〉t > ε3) + ε. (3.16)

Clearly, the claim (3.12) follows from (3.15) and (3.16). Therefore, it follows
from (3.9) and (3.12) that

〈X(0) − h,X(t, x̃)〉π → 0 in ν ⊗ P x̃-probability as t→ ∞. �

Proof of Theorem 2.8 For any x̃ ∈ ΞF , let X(0, x̃) ≡ x̃. Then we have

E(e−〈X(t),x̃〉π ) = Eν ⊗ Ex̃(e−〈X(0),X(t,x̃)〉π )

= Eν ⊗ Ex̃(e−〈X(0)−h,X(t,x̃)〉πe−〈h,X(t,x̃)〉π ). (3.17)

From Proposition 2.7, it is easy to see that

e−〈X(0)−h,X(t,x̃)〉π → 1 in ν ⊗ P x̃-probability as t→ ∞. (3.18)

(3.17) and (3.18) imply that

lim
t→∞Eν(e−〈X(t),x̃〉π ) = lim

t→∞Ex̃(e−〈h,X(t,x̃)〉π ). (3.19)
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It follows from (2.5) that

lim
t→∞Eν(e−〈X(t),x̃〉π ) =

∫
e−〈x,x̃〉πνh(dx). (3.20)

Therefore, L [X(t)] ⇒ νh as t→ ∞. �
3.2 Proof of Theorem 2.9

We need the following lemmas to prove Theorem 2.9.

Lemma 3.1 If h ∈ H , then νh ∈ Mh.

Lemma 3.2 If μ ∈ (I ∩ J2)ex, then

lim
t→∞

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx) = h(i)h(j), i, j ∈ S,

where h(i) =
∫
xiμ(dx), i ∈ S.

The proofs of Lemmas 3.1 and 3.2 will be given later.

Proof of Theorem 2.9 The proof will be done in two steps.
Step 1 We will show that ∀ h ∈ H , νh ∈ (I ∩J2)ex. From Lemma 3.1 and
Theorem 2.8, we know that νh ∈ I ∩ J2. Suppose νh = λμ+ (1 − λ)ν, where
μ, ν ∈ I ∩ J2 and 0 < λ < 1. Then
∫ (∑

k

as(i, k)xk−h(i)
)2

νh(dx) = λ

∫ (∑

k

as(i, k)xk−h(i)
)2

μ(dx)+(1−λ)

·
∫ (∑

k

as(i, k)xk − h(i)
)2

ν(dx). (3.21)

From Lemma 3.1, the left-hand side of (3.21) converges to 0 as t → ∞, and
then each term on the right-hand side of (3.21) must converge to 0 as t → ∞.
Noting that μ, ν ∈ J2, we get μ, ν ∈ Mh. It follows from Theorem 2.8 that
T ∗

t μ ⇒ νh and T ∗
t ν ⇒ νh as t → ∞. Since μ, ν ∈ I , we obtain μ = ν = νh.

This shows that νh ∈ (I ∩ J2)ex.
Step 2 We will show that (I ∩ J2)ex ⊂ {νh | h ∈ H }. ∀ μ ∈ (I ∩ J2)ex,
we need to show μ = νh for some h ∈ H . Let h(i) =

∫
xiμ(dx), i ∈ S. Using

the same method as the proof of [5, Lemma 1], we have

EμXi(t) =
∑

k

at(i, k)
∫
xkμ(dx) =

∑

k

at(i, k)h(k). (3.22)

Since μ is invariant, (3.22) implies that h ∈ H .
In order to show μ = νh, from Theorem 2.8 and μ ∈ I , it suffices to show

μ ∈ Mh. Since μ ∈ J2, it remains to show

lim
t→∞

∫ ( ∑

k

at(i, k)xk − h(i)
)2

μ(dx) = 0, i ∈ S. (3.23)
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It follows from Lemma 3.2 and (3.22) that

lim
t→∞

∫ (∑

k

at(i, k)xk − h(i)
)2

μ(dx)

= lim
t→∞

(∑

k,l

at(i, k)at(i, l)
∫
xkxlμ(dx) − 2h(i)

∑

k

at(i, k)
∫
xkμ(dx) + h2(i)

)

= lim
t→∞

∑

k,l

at(i, k)at(i, l)
∫
xkxlμ(dx) − h2(i)

= 0. (3.24)

Hence, (3.23) holds. �

Proof of Lemma 3.1 In order to show νh ∈ Mh, we need to show

sup
i

∫
x2

i νh(dx) <∞, (3.25)

lim
s→∞

∫ (∑

k

as(i, k)xk − h(i)
)2

νh(dx) = 0, i ∈ S. (3.26)

First, we use the similar method to the proof of [31, Lemma 2.1] to prove
(3.25). Let fij(t) = Eδh(Xi(t)Xj(t)). Applying Itô’s formula to fij(t), we get

d
dt
fij(t) =

∑

k

a(i, k)Eδh (Xk(t)Xj(t)) +
∑

l

a(j, l)Eδh (Xi(t)Xl(t))

+
(
α2 +

∫
u2ρ(du)

)
δ(i, j)Eδh (X2

i (t))

= (A1 +A2)fij(t) +
(
α2 +

∫
u2ρ(du)

)
δ(i, j)fij(t), (3.27)

where
(A1 +A2)fij =

∑

k

a(i, k)fkj +
∑

l

a(j, l)fil.

Denote by (ξt, P(i,j)) the continuous time Markov chain on S×S, which has
the generator A1 +A2 and the transition probability at ⊗ at, where

at ⊗ at((i, j), (k, l)) = at(i, k)at(j, l).

We set b = α2 +
∫
u2ρ(du). Applying Feynman-Kac’s formula, we have

fij(t) = E(i,j)

(
fξt(0) exp

(∫ t

0
bI�(ξs)ds

))
, (3.28)
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where �= {(i, j) ∈ S × S | i = j}. Let C = maxi∈S h(i). Then fij(0) � C
2 for

all i, j ∈ S. Hence,

Eδh(X2
i (t)) = fii(t)

= E(i,i)

(
fξt(0) exp

(∫ t

0
bI�(ξs)ds

))

� C
2
E(i,i)

(
exp

(∫ t

0
bI�(ξs)ds

))
. (3.29)

Using Taylor’s expansion for the exponential function and combing it with (2.9),
we have

E(i,i)

(
exp

(∫ t

0
bI�(ξs)ds

))

= E(i,i)

( ∞∑

n=0

( ∫ t
0 bI�(ξs)ds

)n

n!

)

= E(i,i)

( ∞∑

n=0

bn
∫

· · ·
∫

0<t1<···<tn<t

I�(ξt1) · · · I�(ξtn)dt1dt2 · · · dtn
)

=
∞∑

n=0

bn
∫

· · ·
∫

0<t1<···<tn<t

P(i,i)

(
ξt1 ∈�, · · · , ξtn ∈�

)
dt1dt2 · · · dtn

=
∞∑

n=0

bn
∫

· · ·
∫

0<t1<···<tn<t

∑

k1···kn

at1(i, k1)at1(i, k1) · · · atn−tn−1(kn−1, kn)

· atn−tn−1(kn−1, kn)dt1dt2 · · · dtn

� G

∞∑

n=0

bn
∫

· · ·
∫

0<t1<···<tn−1<t

∑

k1···kn−1

at1(i, k1)at1(i, k1) · · · atn−1−tn−2(kn−2, kn−1)

· atn−1−tn−2(kn−2, kn−1)dt1dt2 · · · dtn−1

�
∞∑

n=0

(bG)n

<∞. (3.30)

Let

L = C
2

∞∑

n=0

(bG)n.

Then L is a constant independent of i. Hence, (3.29) and (3.30) imply that for
all i ∈ S,

Eδh(X2
i (t)) = fii(t) � L <∞. (3.31)
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Since T ∗
t δh ⇒ νh, we have

∫
(x2

i ∧N)νh(dx) = lim
t→∞Eδh(X2

i (t) ∧N) � lim inf
t→∞ Eδh(X2

i (t)) � L. (3.32)

It follows from (3.32) that (3.25) holds.
Next, let us prove (3.26). It is straightforward to check that

∫ (∑

k

as(i, k)xk − h(i)
)2

νh(dx)

� lim inf
t→∞

∫ (∑

k

as(i, k)xk − h(i)
)2

T ∗
t δh(dx)

= lim inf
t→∞

[∑

k,l

as(i, k)as(i, l)Eδh(Xk(t)Xl(t))

−2h(i)
∑

k

as(i, k)EδhXk(t)
]

+ h2(i). (3.33)

Similar to (3.22) and using the fact that h ∈ H , we get

EδhXk(t) =
∑

l

at(k, l)h(l) = h(k), k ∈ S, (3.34)

Eδh(Xk(t)Xl(t)) = h(k)h(l) + b

∫ t

0

∑

m

at−r(k,m)at−r(l,m)Eδh(X2
m(r))dr,

(3.35)
where b = α2+

∫
u2ρ(du). Inserting (3.34) and (3.35) into (3.33), and combining

with (3.31) and (2.9), we have
∫ (∑

k

as(i, k)xk − h(i)
)2

νh(dx)

� b lim inf
t→∞

∑

k,l

as(i, k)as(i, l)
∫ t

0

∑

m

at−r(k,m)at−r(l,m)Eδh(X2
m(r))dr

� bL lim inf
t→∞

∫ t

0

∑

m

at+s−r(i,m)at+s−r(i,m)dr

� bL

∫ ∞

s

∑

m

ar(i,m)ar(i,m)dr

→ 0, s→ ∞. (3.36)

Hence, (3.26) holds. �
Proof of Lemma 3.2 Step 1 We will show that

lim
t→∞

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx)
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exists. Similar to (3.35), for any t > 0, we have

Eμ(Xi(t)Xj(t)) =
∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx)

+ b

∫ t

0

∑

k

at−r(i, k)at−r(j, k)Eμ(X2
k(r))dr. (3.37)

Since μ is invariant, (3.37) can be rewritten as
∫
xixjμ(dx) =

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx)

+ b

∫ t

0

∑

k

ar(i, k)ar(j, k)
∫
x2

kμ(dx)dr. (3.38)

Noting that μ ∈ J2, we have

∫ ∞

0

∑

k

ar(i, k)ar(j, k)
∫
x2

kμ(dx)dr � C̃

πi

∫ ∞

0

∑

k

πkar(k, i)ar(j, k)dr

� C̃

πi
max

k
πk

∫ ∞

0
a2r(j, i)dr

<∞, (3.39)

where
C̃ = sup

k

∫
x2

kμ(dx).

(3.39) means that
∫ t

0

∑

k

ar(i, k)ar(j, k)
∫
x2

kμ(dx)dr

has limit as t→ ∞. It follows from (3.38) that

lim
t→∞

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx)

exists.
Step 2 We will show that for some increasing sequence {tn} tending to ∞,

h(i)h(j) = lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds. (3.40)

Fix i ∈ S. Noting that
∫
xiμ(dx) = h(i),

∫
x2

iμ(dx) <∞,
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we have

lim
m→∞

∫
(xi ∧m)μ(dx) = h(i), lim

m→∞

∫
x2

i I{xi>m}μ(dx) = 0.

Then ∀ ε > 0, ∃ N large enough such that
∫

(xi ∧N)μ(dx) > h(i) − ε, (3.41)
∫
x2

i I{xi>N}μ(dx) < ε2. (3.42)

For arbitrary δ ∈ (0, 1/2), we define two probability measures μ1 and μ2 by

〈μ1, f〉 =

∫
f(x)(xi∧N

2N + δ)μ(dx)
∫

(xi∧N
2N + δ)μ(dx)

, ∀ f ∈ Bb(L2(γ)),

〈μ2, f〉 =

∫
f(x)(1 − xi∧N

2N − δ)μ(dx)
∫
(1 − xi∧N

2N − δ)μ(dx)
, ∀ f ∈ Bb(L2(γ)),

where Bb(L2(γ)) is the set of all bounded Borel-measurable functions on L2(γ).
Then it holds that μ = λμ1 + (1 − λ)μ2, where

λ =
∫ (xi ∧N

2N
+ δ

)
μ(dx) ∈ (0, 1).

Since μ ∈ J2, μ1, μ2 ∈ J2. Then, it can be shown that both

1
t

∫ t

0

∫
Tsx

2
iμ1(dx)ds and

1
t

∫ t

0

∫
Tsx

2
i μ2(dx)ds

are uniformly bounded in i, t. Thus,

1
t

∫ t

0
T ∗

s μ1ds,
1
t

∫ t

0
T ∗

s μ2ds

are tight, and therefore, for some increasing sequence {tn} tending to ∞,

lim
n→∞

1
tn

∫ tn

0
T ∗

s μ1ds = μ1 ∈ I , lim
n→∞

1
tn

∫ tn

0
T ∗

s μ2ds = μ2 ∈ I .

Then μ = λμ1 + (1 − λ)μ2. It follows from μ ∈ Iex that μ = μ1 = μ2.
Noting that

1
tn

∫ tn

0
T ∗

s μ1ds⇒ μ1 = μ

and μ ∈ J2, we have

lim
n→∞

1
tn

∫ tn

0
〈T ∗

s μ1, xj〉ds = 〈μ, xj〉 =
∫
xjμ(dx). (3.43)
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By the definition of μ1, we have
∫ (xi ∧N

2N
+ δ

)
μ(dx)

∫
xjμ(dx)

= lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)

(xi ∧N
2N

+ δ
)
μ(dx)ds. (3.44)

Then, (3.44) yields
(

1
2N

∫
(xi ∧N)μ(dx) + δ

)
h(j)

= lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)

xi ∧N
2N

μ(dx) + δ

∫
(Tsxj)μ(dx)

)
ds

= lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)

xi ∧N
2N

μ(dx) + δh(j)
)

ds

=
1

2N
lim

n→∞
1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds+ δh(j). (3.45)

Hence, it follows from (3.45) that
∫

(xi ∧N)μ(dx)h(j) = lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds. (3.46)

On the one hand, by the Hölder inequality and (3.42), we have

lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds

= lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)xiμ(dx) −

∫
(Tsxj)(xi −N)I{xi>N}μ(dx)

)
ds

= lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)xiμ(dx)

−
∫ ∑

k

as(j, k)xk(xi −N)I{xi>N}μ(dx)
)

ds

� lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)xiμ(dx) −

∑

k

as(j, k)
∫
xkxiI{xi>N}μ(dx)

)
ds

� lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)xiμ(dx)

−
∑

k

as(j, k)
( ∫

x2
kμ(dx)

)1/2(∫
x2

i I{xi>N}μ(dx)
)1/2)

ds

� lim
n→∞

1
tn

∫ tn

0

(∫
(Tsxj)xiμ(dx) −

∑

k

as(j, k)C̃1/2ε

)
ds
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= lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds− C̃1/2ε. (3.47)

On the other hand,

lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)(xi∧N)μ(dx)ds � lim

n→∞
1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds. (3.48)

Hence, (3.47) and (3.48) yield that

∣∣∣ lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds− lim

n→∞
1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds

∣∣∣

� C̃1/2ε. (3.49)

(3.41) implies
∣∣∣
∫

(xi ∧N)μ(dx)h(j) − h(i)h(j)
∣∣∣ � εh(j). (3.50)

By (3.46), (3.49), and (3.50), we have

∣∣∣h(i)h(j) − lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds

∣∣∣

�
∣∣∣
∫

(xi ∧N)μ(dx)h(j) − h(i)h(j)
∣∣∣

+
∣∣∣
∫

(xi ∧N)μ(dx)h(j) − lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds

∣∣∣

+
∣∣∣ lim

n→∞
1
tn

∫ tn

0

∫
(Tsxj)(xi ∧N)μ(dx)ds− lim

n→∞
1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds

∣∣∣

� εh(j) + C̃1/2ε. (3.51)

Since ε is arbitrary, (3.40) holds.
Step 3 Let

h(i, j) = lim
t→∞

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx).

In order to show

lim
t→∞

∑

k,l

at(i, k)at(j, l)
∫
xkxlμ(dx) = h(i)h(j),

by (3.40), we need to show that

h(i, j) = lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds. (3.52)
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From Remark of [29, Lemma 4.7], we know that for arbitrarily fixed i ∈ S,
h(i, ·) is harmonic with respect to A. By (3.38), we have

πj lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds

= πj lim
n→∞

1
tn

∫ tn

0

(∫ ∑

k

as(j, k)xkxiμ(dx)
)

ds

= πj lim
n→∞

1
tn

∫ tn

0

(∑

k

as(j, k)
∫
xkxiμ(dx)

)
ds

= πj lim
n→∞

1
tn

∫ tn

0

∑

k

as(j, k)
(
h(i, k)

+ b

∫ ∞

0

∑

m

ar(k,m)ar(i,m)
∫
x2

kμ(dx)dr
)

ds

= πj lim
n→∞

1
tn

∫ tn

0

(
h(i, j) + b

∫ ∞

0

∑

k,m

as(j, k)ar(k,m)ar(i,m)
∫
x2

kμ(dx)dr
)

ds

= πjh(i, j) + bπj lim
n→∞

1
tn

∫ tn

0

∫ ∞

0

(∑

k,m

as(j, k)ar(k,m)ar(i,m)

·
∫
x2

kμ(dx)
)

drds. (3.53)

Noting that

0 � πj lim
n→∞

1
tn

∫ tn

0

∫ ∞

0

(∑

k,m

as(j, k)ar(k,m)ar(i,m)
∫
x2

kμ(dx)
)

drds

� C̃πj lim
n→∞

1
tn

∫ tn

0

∫ ∞

0

∑

m

as+r(j,m)ar(i,m)drds

= C̃ lim
n→∞

1
tn

∫ tn

0

∫ ∞

0

∑

m

πmas+r(m, j)ar(i,m)drds

� 1
2
C̃max

m
πm lim

n→∞
1
tn

∫ tn

0

∫ ∞

s
ar(i, j)drds

= 0 (by the transience of at), (3.54)
we have

πj lim
n→∞

1
tn

∫ tn

0

∫ ∞

0

(∑

k,m

as(j, k)ar(k,m)ar(i,m)
∫
x2

kμ(dx)
)

drds = 0. (3.55)

Hence, (3.53) and (3.55) imply that for all i, j ∈ S,

πjh(i, j) = πj lim
n→∞

1
tn

∫ tn

0

∫
(Tsxj)xiμ(dx)ds.

Therefore, (3.52) holds. �
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Appendix

A1 Some lemmas of proof of Proposition 2.4

In order to prove Propositions 2.4 and 2.6, we need the following lemmas. For
any E(‖X(0)‖2

γ,2) <∞, we consider (1.5),

Xi(t) = Xi(0) + κ

∫ t

0

∑

j∈S

a(i, j)Xj(s)ds+ β

∫ t

0
Xi(s)ds

+
∫ t

0
αXi(s)dBi(s) +

∫ t+

0

∫

|u|<δ
uXi(s−)Ñi(dsdu)

+
∫ t+

0

∫

|u|�δ
uXi(s−)Ni(dsdu), i ∈ S. (A1)

Let {Sn}n∈N be a sequence of finite sets which increase to S as n → ∞.
Consider the following finite-dimensional equation:

X
(n)
i (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
(n)
i (0) + κ

∫ t

0

∑

j∈S

a(i, j)X(n)
j (s)ds+ β

∫ t

0
X

(n)
i (s)ds

+
∫ t

0
αX

(n)
i (s)dBi(s) +

∫ t+

0

∫

|u|<δ
uX

(n)
i (s−)Ñi(dsdu)

+
∫ t+

0

∫

|u|�δ
uX

(n)
i (s−)Ni(dsdu), i ∈ Sn,

Xi(0), i ∈ S\Sn.

(A2)

Since (A2) is a finite-dimensional linear equation, using classical method,
it is easy to prove that (A2) has a pathwise unique solution {X(n)

i (t)} and
E(sup0�s�T |X(n)

i (s)|2) < ∞. Moreover, we have the following lemma, which

implies that E(sup0�s�T |X(n)
i (s)|2) < C independent of n.

Lemma A1 In the case i ∈ Sn,

E( sup
0�s�T

|X(n)
i (s)|2) � 5

∑

j∈S

(eTMT )ijE(|X(n)
j (0)|2), (A3)

where

MT (i, j) = 10κ2T sup
i∈S

|a(i, i)|+δij5
[
C2

∫

R\{0}
u2ρ(du)+C̃2α

2+�2T

]
, i, j ∈ S,
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and � =
∫
|u|�δ uρ(du)+β. Note that A is a Q-matrix satisfying supi∈S |a(i, i)| <

∞. Thus, eTMT makes sense for any T > 0.

Proof By (A2), we have

X
(n)
i (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X
(n)
i (0) + κ

∫ t

0

∑

j∈S

a(i, j)X(n)
j (s)ds+�

∫ t

0
X

(n)
i (s)ds

+
∫ t

0
αX

(n)
i (s)dBi(s) +

∫ t+

0

∫

R\{0}
uX

(n)
i (s−)Ñi(dsdu), i ∈ Sn,

Xi(0), i ∈ S\Sn.

For any M > 0, denote σM = inf{t � 0 | supi∈Sn
|X(n)

i (t)| � M} and

X̃
(n)
i (t) =

⎧
⎨

⎩
X

(n)
i (t), t < σM ,

lim
t→σM−X

(n)
i (t), t � σM .

For i ∈ Sn and t < σM , we get

|X̃(n)
i (t)|2 � 5

{
|X(n)

i (0)|2 +
∣∣∣κ

∫ t

0

∑

j∈S

a(i, j)X̃(n)
j (s)ds

∣∣∣
2
+

∣∣∣�
∫ t

0
X̃

(n)
i (s)ds

∣∣∣
2

+
∣∣∣
∫ t

0
αX̃

(n)
i (s)dBi(s)

∣∣∣
2
+

∣∣∣
∫ t+

0

∫

R\{0}
uX̃

(n)
i (s−)Ñi(dsdu)

∣∣∣
2
}

=: 5{I1 + I2 + I3 + I4 + I5}. (A4)

By (A4), if σM > T, then

sup
0�t�T

|X̃(n)
i (t)|2 � sup

0�t�T
5{I1 + I2 + I3 + I4 + I5}; (A5)

if σM � T, then

sup
0�t�T

|X̃(n)
i (t)|2 = sup

0�t<σM

|X̃(n)
i (t)|2

� sup
0�t<σM

5{I1 + I2 + I3 + I4 + I5}

� sup
0�t�T

5{I1 + I2 + I3 + I4 + I5}. (A6)

It follows from (1.1) that

E( sup
0�t�T

I2) � κ2E

(
sup

0�t�T

∫ t

0

∑

j∈S

|a(i, j)|ds ·
∫ t

0

∑

j∈S

|a(i, j)| |X̃(n)
j |2ds

)

� 2κ2T sup
i∈S

|a(i, i)|E
(

sup
0�t�T

∫ t

0

∑

j∈S

|a(i, j)| |X̃(n)
j |2ds

)
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� 2κ2T sup
i∈S

|a(i, i)|
∫ T

0

∑

j∈S

|a(i, j)|E( sup
0�s′�s

|X̃(n)
j (s′)|2)ds. (A7)

For I3, by Hölder’s inequality, we have

E( sup
0�t�T

I3) � �2T

∫ T

0
E

(
sup

0�s′�s
|X̃(n)

i (s′)|2)ds. (A8)

By the Burkholder-Davis-Gundy inequality (see [26]), we have

E( sup
0�t�T

I4) � α2C̃2E

( ∫ T

0
[X̃(n)

i (s)]2ds
)

� α2C̃2

∫ T

0
E( sup

0�s′�s
|X̃(n)

i (s′)|2)ds, (A9)

E( sup
0�t�T

I5) � C2E

(∫ T+

0

∫

R\{0}
[uX̃(n)

i (s−)]2Ni(dsdu)
)

� C2E

(∫ T

0

∫

R\{0}
[uX̃(n)

i (s)]2ρ(du)ds
)

� C2

∫

R\{0}
u2ρ(du) ·

∫ T

0
E( sup

0�s′�s
|X̃(n)

i (s′)|2)ds. (A10)

Therefore, by (A5)–(A10), we have

E( sup
0�s�T

|X̃(n)
i (s)|2)

� 5E(|X(n)
i (0)|2) + 10κ2T sup

i∈S
|a(i, i)|

∫ T

0

∑

j∈S

|a(i, j)|E( sup
0�s′�s

|X̃(n)
j (s′)|2)ds

+ 5
[
C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

] ∫ T

0
E( sup

0�s′�s
|X̃(n)

i (s′)|2)ds. (A11)

Due to Gronwall’s inequality and E(sup0�s�T |X(n)
i (s)|2) <∞, we have

E( sup
0�s�T

|X̃(n)
i (s)|2) � 5

∑

j∈S

(eTMT )ijE(|X(n)
j (0)|2).

Referring to [27, Eq. (1.10)], we have

P (ω | X(n)
i (T ) �= X

(n)
i (T−))

� P

(
ω

∣∣∣
∫ T+

0

∫

R\{0}
uÑi(dsdu) �= lim

t→T−

∫ t+

0

∫

R\{0}
uÑi(dsdu)

)

= 0. (A12)

By Fatou’s lemma and (A12), (A3) holds. �
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Lemma A2 For any t ∈ [0, T ], we have

E( sup
0�s�t

‖X(n)(s)‖2
γ,2) � 5E(‖X(n)(0)‖2

γ,2) · exp
{

5t
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj

+C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]}
. (A13)

Proof It follows from (A11) that

E

( ∑

i∈S

γi sup
0�s�t

|X(n)
i (s)|2

)

� 5E
( ∑

i∈S

γi|X(n)
i (0)|2

)

+ 10κ2T sup
i∈S

|a(i, i)|
∫ t

0

∑

i∈S

∑

j∈S

γi|a(i, j)|E(γj sup
0�s′�s

|X(n)
j (s′)|2)ds

+ 5
[
C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

] ∫ t

0
E

(∑

i∈S

γi sup
0�s′�s

|X(n)
i (s′)|2

)
ds.

Noting that ∑

i∈S

∑

j∈S

γi|a(i, j)|E(γj sup
0�s′�s

|X(n)
j (s′)|2)

=
∑

j∈S

E(γj sup
0�s′�s

|X(n)
j (s′)|2)

∑

i∈S

γi|a(i, j)|

�
∑

j∈S

E(γj sup
0�s′�s

|X(n)
j (s′)|2) · Γγi

� Γ sup
j∈S

γjE

(∑

i∈S

γi sup
0�s′�s

|X(n)
i (s′)|2

)
, (A14)

we have

E

(∑

i∈S

γi sup
0�s�t

|X(n)
i (s)|2

)

� 5E
( ∑

i∈S

γi|X(n)
i (0)|2

)
+ 5

[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj

+ C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]
·
∫ t

0
E

( ∑

i∈S

γi sup
0�s′�s

|X(n)
i (s′)|2

)
ds.

Note that X(n)(0) ∈ L2(γ) and X(n) is a finite-dimensional equation essentially.
Then

E

( ∑

i∈S

γi sup
0�s�t

|X(n)
i (s)|2

)
<∞.
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By Gronwall’s inequality,

E

(∑

i∈S

γi sup
0�s�t

|X(n)
i (s)|2

)

� 5E
( ∑

i∈S

γi|X(n)
i (0)|2

)
· exp

{
5
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj

+C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]
t

}
. (A15)

Hence,

E( sup
0�s�t

‖X(n)(s)‖2
γ,2) � 5E(‖X(n)(0)‖2

γ,2) · exp
{

5t
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj

+ C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]}
.

The proof is complete. �
Lemma A3 limn,m→∞E(sup0�s�T ‖X(n)(s) −X(m)(s)‖2

γ,2) = 0.

Proof For n � m, we have

X
(n)
i (s) −X

(m)
i (s)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ

∫ t

0

∑

j∈S

a(i, j)(X(n)
j (s) −X

(m)
j (s))ds+�

∫ t

0
(X(n)

i (s) −X
(m)
i (s))ds

+
∫ t

0
α(X(n)

i (s) −X
(m)
i (s))dBi(s)

+
∫ t+

0

∫

R\{0}
u(X(n)

i (s−) −X
(m)
i (s−))Ñi(ds,du), i ∈ Sm,

κ

∫ t

0

∑

j∈S

a(i, j)X(n)
j (s)ds+�

∫ t

0
X

(n)
i (s)ds+

∫ t

0
αX

(n)
i (s)dBi(s)

+
∫ t+

0

∫

R\{0}
uX

(n)
i (s−)Ñi(ds,du) −Xi(0), i ∈ Sn\Sm,

0, i ∈ S\Sn.

Applying the same argument as in Lemma A1, for i ∈ Sm, we get

E( sup
0�s�T

|X(n)
i (s) −X

(m)
i (s)|2)

� 10κ2T sup
i∈S

|a(i, i)|
∫ T

0

∑

j∈S

|a(i, j)|E( sup
0�s′�s

|X(n)
j (s′) −X

(m)
j (s′)|2)ds

+ 5
[
C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]
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·
∫ T

0
E( sup

0�s′�s
|X(n)

i (s′) −X
(m)
i (s′)|2)ds.

It is easy to see

E( sup
0�s�T

|X(n)
i (s) −X

(m)
i (s)|2)

⎧
⎪⎨

⎪⎩

� 2E(sup0�s�T |X(n)
i (s)|2) + 2E(|Xi(0)|2),

i ∈ Sn\Sm,

= 0, i ∈ S\Sn,

By the above inequalities, we have

E

(∑

i∈S

γi sup
0�s�T

|X(n)
i (s) −X

(m)
i (s)|2

)

� 10κ2T sup
i∈S

|a(i, i)|
∫ T

0

∑

i∈S

γi

∑

j∈S

|a(i, j)|E( sup
0�s′�s

|X(n)
j (s′) −X

(m)
j (s′)|2)ds

+ 5
[
C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]

·
∫ T

0
E

(∑

i∈S

γi sup
0�s′�s

|X(n)
i (s′) −X

(m)
i (s′)|2

)
ds

+
∑

i∈Sn\Sm

γi(2E( sup
0�s�T

|X(n)
i (s)|2) + 2E(|Xi(0)|2)).

Together with (A14), we have

E( sup
0�s�T

‖X(n)(s) −X(m)(s)‖2
γ,2)

�
∑

i∈Sn\Sm

γi(2E( sup
0�s�T

|X(n)
i (s)|2) + 2E(|Xi(0)|2))

· exp
{

5
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj + C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]
T

}
.

Therefore, Lemma A3 holds by Lemmas A1 and A2. �
Lemma A3 implies that there exists an L2(γ)-valued stochastic process

(X(t))t�0 such that for t > 0,

lim
n→∞E( sup

0�s�t
‖X(n)(s) −X(s)‖2

γ,2) = 0. (A16)

In fact, (X(t))t�0 is the solution of (1.5). Moreover, by Lemma A2, it is easy
to prove the following lemma.

Lemma A4 For any t ∈ [0, T ], we have

E( sup
0�s�t

‖X(s)‖2
γ,2) � 5E(‖X(0)‖2

γ,2) exp
{

5t
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj
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+C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]}
. (A17)

Lemma A5 (X(t))t�0 has the Feller property.

Proof Let Cb(L2(γ)) be the space of bounded continuous real-valued functions,
and let Lipb(L2(γ)) be the set of bounded Lipschitz real-valued functions.

Note that Lipb(L2(γ)) is dense in Cb(L2(γ)) under sup norm. Therefore, we
need only to prove that for any f ∈ Lipb(L2(γ)),

lim
y→x

E(f(X(t, y))) = E(f(X(t, x))), x, y ∈ L2(γ). (A18)

By Lemmas A1–A3, for ε > 0, there exist δ > 0 and N > 0, such that for
z ∈ Bδ(x) and n > N,

E( sup
0�t�T

‖X(t, z) −X(n)(t, z)‖2
γ,2

)
< ε.

Using the same argument in Lemma A2, we have

E( sup
0�s�T

‖X(n)(s, x) −X(n)(s, y)‖2
γ,2)

� 5‖x− y‖2
γ,2 exp

{
5T

[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj

+ C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]}
.

Thus,
lim
y→x

E(‖X(t, x) −X(t, y)‖2
γ,2) = 0.

Therefore,

lim
y→x

|E(f(X(t, y))) − E(f(X(t, x)))| � lim
y→x

C(E(‖X(t, x) −X(t, y)‖2
γ,2))

1/2

= 0. �

Lemma A6 Xi(·) ∈ D[0,∞; R] a.s.

Proof From [1], we need only to show that Aldous’s tightness criterion holds.
By (A3), we have for any t > 0, {X(n)

i (t)}n∈N is tight in R. Let {τn, δn}
satisfy the following conditions (see [1]).

(i) For each n, τn is a stopping time on the process {X(n)
i (t), 0 � t � T}

with respect to the natural σ-fields, and τn takes only finitely many values.
(ii) For each n, δn is a constant, 0 � δn � 1, limn→∞ δn = 0.
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Similar to Lemma A2 and noting (A15), we have

E(‖X(n)(τn + δn) −X(n)(τn)‖2
γ,2)

� 4
∑

i∈S

γiE

[∣∣∣κ
∫ τn+δn

τn

∑

j∈S

a(i, j)X(n)
j (s)ds

∣∣∣
2
+

∣∣∣�
∫ τn+δn

τn

X
(n)
i (s)ds

∣∣∣
2

+
∣∣∣
∫ τn+δn

τn

αX
(n)
i (s)dBi(s)

∣∣∣
2
+

∣∣∣
∫ τn+δn

τn

αX
(n)
i (s)dBi(s)

∣∣∣
2

+
∣∣∣
∫ (τn+δn)+

τn

∫

R\{0}
uX

(n)
i (s−)Ñi(ds,du)

∣∣∣
2
]
,

� CE

(∑

i∈S

γi sup
t∈[0,T ]

|X(n)
i (t)|2ds

)
δn

� Cδn · 5E(‖X(n)(0)‖2
γ,2) · e5TC/4,

where

C = 4
[
2κ2T sup

i∈S
|a(i, i)|Γ sup

j∈S
γj + C2

∫

R\{0}
u2ρ(du) + C̃2α

2 +�2T

]
.

Thus,

E(|X(n)
i (τn + δn) −X

(n)
i (τn)|2) � 1

γ2
i

E(‖X(n)(τn + δn) −X(n)(τn)‖2
γ,2)

� C̃

γ2
i

δn

→ 0, δn → 0, (A19)

where

C̃ = 4CE(‖X(n)(0)‖2
γ,2) · e5T [2κ2T supi∈S |a(i,i)|Γ supj∈S γj+

∫
R\{0} u2ρ(du)+α2+�2T ]

.

It follows from (A19) that

X
(n)
i (τn + δn) −X

(n)
i (τn) → 0 in probability.

Hence, {X(n)
i (t), t � 0}n∈N satisfies Aldous’s tightness criterion, which implies

that {X(n)
i (t), t � 0}n∈N is tight in D[0,∞; R]. Therefore, we get the lemma.�

Lemma A7 For any x̃ ∈ ΞF , we have

Ex̃(〈h,X(t, x̃)〉2π) � 〈h, x̃〉2πect <∞,

where c := α2 +
∫
u2ρ(du).
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Proof Note that

d
dt
Ex̃(Xi(t)Xj(t)) =

∑

k

a(i, k)Ex̃(Xk(t)Xj(t)) +
∑

l

a(j, l)Ex̃(Xi(t)Xl(t))

+
(
α2 +

∫
u2ρ(du)

)
δ(i, j)Ex̃(X2

i (t)).

Using the same method as the proof of [5, Lemma 1], we have

Ex̃(Xi(t)Xj(t)) =
∑

k,l

at(i, k)at(j, l)x̃kx̃l +
(
α2 +

∫
u2ρ(du)

)

·
∫ t

0

∑

k

at−r(i, k)at−r(j, k)Ex̃(X2
k(r))dr. (A20)

For the sake of convenience, we write

Ex̃(〈h,X(t)〉2π) = Ex̃(〈h,X(t, x̃)〉2π).

From (A20), we get that for h ∈ H ,

Ex̃(〈h,X(t)〉2π) =
∑

i,j

πiπjh(i)h(j)Ex̃(Xi(t)Xj(t))

= 〈h, x̃〉2π +
(
α2 +

∫
u2ρ(du)

)∫ t

0

∑

k

π2
kh

2(k)Ex̃(X2
k (r))dr

� 〈h, x̃〉2π +
(
α2 +

∫
u2ρ(du)

) ∫ t

0
Ex̃(〈h,X(r)〉2π)dr. (A21)

Similar to (A21), we have

Ex̃(〈h,X(n)(t)〉2π) � 〈h, x̃〉2π +
(
α2 +

∫
u2ρ(du)

) ∫ t

0
Ex̃(〈h,X(n)(r)〉2π)dr. (A22)

Note that

Ex̃(〈h,X(n)(t)〉2π) = Ex̃

( ∑

i∈Sn

h(i)πiX
(n)
i (t) +

∑

i∈S\Sn

h(i)πiXi(0)
)2

� 2Ex̃

( ∑

i∈Sn

h(i)πiX
(n)
i (t)

)2

+ 2Ex̃

( ∑

i∈S\Sn

h(i)πix̃i

)2

�
∑

i,j∈Sn

h(i)h(j)πiπj[Ex̃(X(n)
i (t))2 +Ex̃(X(n)

j (t))2]

+ 2
( ∑

i∈S\Sn

h(i)πix̃i

)2

.
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By Lemma A1 and using the fact that x̃ ∈ ΞF , for t � 0, we have

Ex̃(〈h,X(n)(t)〉2π) <∞.

Thus, by Gronwall’s inequality, (A22) implies that for all x̃ ∈ ΞF and t � 0,

Ex̃(〈h,X(n)(t)〉2π) � 〈h, x̃〉2πect, (A23)

where c = α2 +
∫
u2ρ(du).

Note that

lim
n→∞Ex̃‖X(n)(t) −X(t)‖2

L2(γ) = 0.

Then there exists an increasing sequence {nk} tending to ∞, such that

X(nk)(t) → X(t) a.s., nk → ∞,

and

X
(nk)
i (t) → Xi(t) a.s., nk → ∞.

By Fatou’s lemma, and combining with 〈h,X(t)〉π � 0, we have

Ex̃(〈h,X(t)〉2π) = Ex̃

(∑

i∈S

h(i)πiXi(t)
)2

= Ex̃

(∑

i∈S

h(i)πi lim inf
nk→∞ X

(nk)
i (t)

)2

� Ex̃(lim inf
nk→∞ 〈h,X(nk)(t)〉2π)

� lim inf
nk→∞ Ex̃(〈h,X(nk)(t)〉2π)

� 〈h, x̃〉2πect

<∞. (A24)
�

Lemma A8 〈h,X(t, x̃)〉π is a càdlàg process.

Proof For any n ∈ N, we have

〈h,X(n)(t, x̃)〉π = 〈h, x̃〉π + α
∑

i∈S

∫ t

0
πih(i)X

(n)
i (s, x̃)dBi(s)

+
∑

i∈S

∫ t

0

∫

R\{0}
uπih(i)X

(n)
i (s−, x̃)Ñi(dsdu). (A25)
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By the Burkholder-Davis-Gundy inequality, we have

Ex̃[ sup
t∈[0,T ]

〈h,X(n)(t, x̃)〉2π]

� 3〈h, x̃〉2π + 3α2Ex̃

[
sup

t∈[0,T ]

∣∣∣
∑

i∈S

∫ t

0
πih(i)X

(n)
i (s, x̃)dBi(s)

∣∣∣
2
]

+ 3Ex̃

[
sup

t∈[0,T ]

∣∣∣
∑

i∈S

∫ t

0

∫

R\{0}
uπih(i)X

(n)
i (s−, x̃)Ñi(dsdu)

∣∣∣
2
]

� 3〈h, x̃〉2π + 3α2Ex̃

[∑

i∈S

∫ T

0
π2

i h
2(i)(X(n)

i (s, x̃))2ds
]

+ 3Ex̃

[∑

i∈S

∫ T

0

∫

R\{0}
u2π2

i h(i)(X
(n)
i (s, x̃))2dsρ(du)

]

� 3〈h, x̃〉2π +
(

3α2 + 3
∫
u2ρ(du)

)
Ex̃

[∑

i∈S

∫ T

0
π2

i h
2(i)(X(n)

i (s, x̃))2ds
]

� 3〈h, x̃〉2π +
(

3α2 + 3
∫
u2ρ(du)

)
Ex̃

[ ∫ T

0
〈h,X(n)(t, x̃)〉2πdt

]

� 3〈h, x̃〉2π +
(

3α2 + 3
∫
u2ρ(du)

)∫ T

0
Ex̃[ sup

s∈[0,t]
〈h,X(n)(s, x̃)〉2π]dt.

By Gronwall’s inequality, we have

Ex̃
[

sup
t∈[0,T ]

〈h,X(n)(t, x̃)〉2π
]

� 3〈h, x̃〉2πec1T , (A26)

here c1 = 3α2 + 3
∫
u2ρ(du).

For any {τn, δn} satisfying (i) and (ii) in Lemma A6 (here using
〈h,X(n)(t, x̃)〉π instead of X(n)

i (t)), by (A25) and (A26), we have

Ex̃(〈h,X(n)(τn + δn) −X(n)(τn)〉2π)

� 2α2Ex̃

[∣∣∣
∑

i∈S

∫ τn+δn

τn

πih(i)X
(n)
i (s, x̃)dBi(s)

∣∣∣
2
]

+ 2Ex̃

[∣∣∣
∑

i∈S

∫ τn+δn

τn

∫

R\{0}
uπih(i)X

(n)
i (s−, x̃)Ñi(dsdu)

∣∣∣
2
]

�
(

2α2 + 2
∫
u2ρ(du)

)
Ex̃

[∑

i∈S

∫ τn+δn

τn

π2
i h

2(i)(X(n)
i (s, x̃))2ds

]

�
(

2α2 + 2
∫
u2ρ(du)

)
Ex̃( sup

r∈[0,T ]
〈h,X(n)(r)〉2π) · δn

� 6
(
α2 +

∫
u2ρ(du)

)
〈h, x̃〉2πec1T · δn. (A27)
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Similar to Lemma A6, using Aldous’s tightness criterion in D[0,∞; R] (see
[1]), we can get that {〈h,X(n)(t)〉π, t � 0}n∈N is tight in D[0,∞; R] by (A22)
and (A27). Thus, 〈h,X(t, x̃)〉π is a càdlàg process. �
A2 Proof of Proposition 2.5

Let {Sn} be an increasing sequence of finite subset of S satisfying ∪n�1Sn = S.
We set {Φi, i ∈ Sn} be a family of independent and identically distributed
compound Poisson processes with characteristic measure of �(du) on R. We
consider the following stochastic differential equation (SDE):

X
(n)
i (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xi(0) +
∫ t

0
κ

∑

j∈S

a(i, j)X(n)
j (s)ds

+
∫ t+

0

∫

R

X
(n)
i (s−)uΦi(ds,du), i ∈ Sn,

Xi(0), i /∈ Sn.

(A28)

ΞF ≡ {x ∈ [0,∞)S | xj = 0 for all but finitely many j ∈ S}, (A29)

L∞,+(S) ≡ {x ∈ [0,∞)S | sup
j∈S

|xj | <∞}, (A30)

Lemma A9 Let (X(n)(t, x))t�0 be the solution of (A28) with initial state
x ∈ L∞(S), and let (X̃(n)(t, x̃))t�0 be the solution of (A28) with initial state
x̃ ∈ ΞF . Then

〈X(n)(t, x), x̃〉π d= 〈X̃(n)(t, x̃), x〉π. (A31)

Proof Let ΦSn ≡ (Φi, i ∈ Sn). Then ΦSn is also a compound Poisson process
with characteristic measure of

�(du) × · · · × �(du)︸ ︷︷ ︸
card(Sn)

on R
card(Sn). Let τ1, τ2, . . . be the jump times of the compound Poisson process

ΦSn . Then we can construct X(n)
t on event {τk � t < τk+1} by

e(t−τk)(κA)Bk−1e(τk−τk−1)(κA)Bk−2 · · ·B1eτ1(κA)x, (A32)

where

et(κA) =
∞∑

k=0

(t(κA))n

n!
,

the semigroup generated by κA on L∞(S), and Bk is finite-rank operator from
L∞(S) to L∞(S) satisfying

(Bkx)i =

{
(Φi(τk+1) − Φi(τk))xi, i ∈ Sn,

0, i /∈ S.
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Because supi∈S |a(i, i)| < ∞, formula (A32) is well-posed. Since x̃ ∈ ΞF , A is
symmetric with respect to π, and Bk is a diagonal matrix, we have

〈e(t−τk)(κA)Bk−1e(τk−τk−1)(κA)Bk−2 · · ·B1eτ1(κA)x, x̃〉π
= 〈x, eτ1(κA)xB1 · · · e(τk−τk−1)(κA)Bk−1e(t−τk)(κA)x̃〉π.

Note that

(τ1, B1, τ2 − τ1, B2, . . . , Bk−1, t− τk), (t− τk, Bk−1, . . . , B2, τ2 − τ1, B1, τ1)
(A33)

have the same distribution conditioned on event {τk � t < τk+1}. We get the
lemma. �

Let {Λ(m)
i , i ∈ Sn} be a family of independent and identically distributed

Poisson processes with intensity m on the same probability space (Ω,F , (F )t,
P ) as (Yi, i ∈ S), which are independent of {Yi, i ∈ Sn}.

We set

Φ(m)
i (t) = Yi

(Λ(m)
i (t)
m

)
, i ∈ Sn, t � 0; ΦSn,m = (Φ(m)

i , i ∈ Sn).

Φ(m)
i is a compound Poisson process with characteristic measure of m · �m(dx),

where

�m(dx) = P
(
Yi

( 1
m

)
∈ dx

)
.

Now, for any x ∈ L2(γ), we consider the following SDE:

X
(n,m)
i (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi +
∫ t

0
κ

∑

j∈S

a(i, j)X (n,m)
j (s)ds

+
∫ t+

0

∫

R

X
(n,m)
i (s−)uΦ(m)

i (ds,du), i ∈ Sn,

xi, i /∈ Sn.

(A34)

Let C2
ub(Rn) be the collection of bounded, uniformly continuous, and twice

smooth functions on R
n, and let Cub(L2(γ)) be the collection of bounded

uniformly continuous functions on L2(γ). Without loss of generality, we set
card(Sn) = n.

Lemma A10 For any f ∈ Cub(L2(γ)), x ∈ L2(γ), and t � 0, we have

lim
m→∞E(f(X(n,m)(t))) = E(f(X(n)(t)), (A35)

where (Xi, i ∈ S) is the solution of (A2) with initial state x.
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Proof Denote by L n and L n,m the generators ofX(n) andX(n,m) on C2
ub(R

n),
respectively. For f ∈ C2

ub(R
n), we have

L nf(xi, i ∈ Sn) =
∑

i∈Sn

(∑

j∈S

κa(i, j)xj + βxi

)
∂f

∂xi
+
α2

2

∑

i∈Sn

x2
i

∂2f

∂x2
i

+
∑

i∈Sn

∫

{|u|�δ}
(f(xi + xiu) − f(xi))xiuρ(du)

+
∑

i∈Sn

∫

{|u|<δ}

(
f(xi + xiu) − f(xi) − xiu

∂f

∂xi

)
ρ(du),

L n,mf(xi, i ∈ Sn)

=
∑

i∈Sn

(∑

j∈S

κa(i, j)xj + βxi

)
∂f

∂xi
+

∑

i∈Sn

∫

R

(f(xi + xiu) − f(x))m�m(du)

=
∑

i∈Sn

(∑

j∈S

κa(i, j)xj + βxi

)
∂f

∂xi
+m

∑

i∈Sn

E
[
f
(
xi + xiYi

( 1
m

))
− f(x)

]

=
∑

i∈Sn

(∑

j∈S

κa(i, j)xj + βxi

)
∂f

∂xi
+
mα2

2

∑

i∈Sn

x2
i

∫ 1/m

0

∂2f

∂x2
i

(xi + xiYi(s))ds

+m
∑

i∈Sn

∫ 1/m

0

∫

{|u|�δ}
(f(xi + xiYi(s−) + u) − f(xi + xiYi(s−)))dsρ(du)

+m
∑

i∈Sn

∫ 1/m

0

∫

{|u|<δ}

(
f(xi + xiYi(s−) + u) − f(xi + xiYi(s−))

−xiu
∂f

∂xi
(xi + xiYi(s−))

)
dsρ(du). (A36)

These imply that for any compact set A ⊂ R
n,

lim
m→∞ sup

(xi,i∈Sn)∈A
|L (n,m)f(x) − L (n)f(x)| = 0. (A37)

By the standard argument of approximations of martingale problem for jump
diffusions (see [10,23,24,32]), we can get (X(n,m)(t))t�0 converges weakly to
(X(n)(t))t�0 as m→ ∞. Therefore, it is not hard to show (A35). �
Lemma A11 Let (X(n)(t))t�0 be the solution of (A2) with initial state x ∈
L∞,+(S), and let (X̃(n)(t))t�0 be the solution of (A2) with initial state x̃ ∈ ΞF .
Then

〈X(n)(t), x̃〉π d= 〈X̃(n)(t), x〉π. (A38)

Proof For any z ∈ ΞF and f ∈ Cub(R), f(〈x, z〉π) ∈ Cub(L2(γ)). Due to
Lemma A10, we have

lim
m→∞E(f(〈Xn,m(t), x̃〉π)) = E(f(〈Xn(t), x̃〉π)), (A39)
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lim
m→∞E(f(〈X̃

n,m
(t), x〉π)) = E(f(〈X̃n(t), x〉π)). (A40)

Thus, (A38) follows from Lemma A9. �
Proof of Proposition 2.5 Since (A16) and (X(t))t�0 is the solution of (1.5), we
obtain that E‖X(n)(t) − X(t)‖2

γ,2 → 0. Therefore, using a same argument as
Lemma A11, for any x, x̃ ∈ ΞF , we can show

〈X(t), x̃〉π d= 〈X̃(t), x〉π. (A41)

For x ∈ L∞,+(S), denote

x
(n)
i =

{
xi, i ∈ Sn,

0, i /∈ Sn,

and let X(n) be the solution of (A2) with initial state x(n). On the one hand,
since E‖X(n)(t) −X(t)‖2

γ,2 → 0, for any f ∈ Cub(R), we have

lim
n→∞E(f(〈X(n)(t), x̃〉π)) = E(f(〈X(t), x̃〉π)). (A42)

On the other hand, there is a constant 0 < M(x, x̃, π) < ∞ dependent on
x, x̃, π only, such that E(〈X(n)(t), x̃〉2π) � M. Since

0 � 〈X̃(t), x(n)〉π ↑ 〈X̃(t), x〉π, a.s. dP,

this shows
E(〈X̃(t), x〉2π) = lim

n→∞E(〈X(n)(t), x̃〉2π) � M. (A43)

Therefore, P (〈X̃(t), x〉π <∞) = 1. Thus,

lim
n→∞E(f(〈X̃(t), x(n)〉π)) = E(f(〈X̃(t), x〉π)). (A44)

Combining (A41), (A42), and (A44), we obtain the self-duality of (1.5). �
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12. Gärtner J, König W. The Parabolic Anderson Model. In: Deuschel J D, Greven A,
eds. Stochastic Interacting Systems. Berlin: Springer-Verlag, 2005, 153–179
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