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Abstract

We propose a model of semi-vicious walkers, which interpolates be-
tween the totally asymmetric simple exclusion process and the vicious
walkers model, having the two as limiting cases. For this model we calcu-
late the asymptotics of the survival probability for m particles and obtain
a scaling function, which describes the transition from one limiting case
to another. Then, we use a fluctuation-dissipation relation allowing us
to reinterpret the result as the particle current generating function in the
totally asymmetric simple exclusion process. Thus we obtain the particle
current distribution asymptotically in the large time limit as the number
of particles is fixed. The results apply to the large deviation scale as well
as to the diffusive scale. In the latter we obtain a new universal distribu-
tion, which has a skew non-Gaussian form. For m particles its asymptotic

behavior is shown to be e
− y2

2m2 as y → −∞ and e−
y2
2m y− m(m−1)

2 as
y → ∞.

1 Introduction

Exact solutions of 1-dimensional (1D) many particle stochastic models [41] have
given much insight into the physics of non-equilibrium systems in one dimen-
sion [42]. They serve as a testing ground for the macroscopic theories, being
able to verify their predictions [3]. Examples are the description of different
kinds of non-equilibrium phase transitions[10], calculation of the large devia-
tion functions for the density profile and total particle current[5], verification of
the fluctuation dissipation relations [27] and testing of the range of their validity
[20].

The range of models is very broad. In the context of the present article we
mention two of them. The first one is the lock step model of vicious walkers
(VW) that has been introduced in the physical literature by M. Fisher [14]
to describe the wetting and melting phenomena. This is a random process
defined as many non-interacting particles performing random walks on a 1D
lattice, whose space-time trajectories are forbidden to cross each other. The
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term non-interacting means that the probability of a particular realization of
the process, which meets the latter constraint, is given by the product of the
probabilities of the random walks performed by each individual walker. The
other realizations, where crossings occur, are assigned zero statistical weight.
Such an elimination of a fraction of possible outcomes at every time step violates
the probability conservation. A measure of the probability dissipation is the sum
of the probabilities of all possible particle configurations at a given time, referred
to as the survival probability. Its leading asymptotics for m particles has been
shown by M. Fisher to decay with time t as a power law: t−

m(m−1)
4 .

Another model, the totally asymmetric simple exclusion process (TASEP)
[29], has been widely discussed in connection to the Kardar-Parisi-Zhang uni-
versality class [24]. In contrast to the VW model, this is a model of interacting
random walks. The interaction prevents particles from jumping to occupied
sites. Therefore, similarly to vicious walkers, the statistical ensemble includes
only those events in which the space-time trajectories of particles do not cross.
The difference is that there is an interaction that changes the statistical weights
of particle trajectories when they pass via neighboring sites so that the total
probability is conserved. In this case the quantity corresponding to the survival
probability is just a probability normalization constant.

Thus, the probability lost after imposing the global non-crossing constraint
on the dynamics of non-interacting particles in VW is regained in the TASEP
by adding the lacking probability locally at certain steps. In the present paper
we consider the two models as limiting cases of a more general interaction,
where the added probability is a varying parameter of the model that controls
the probability dissipation, such that the probability conservation is restored
when it is tuned to the TASEP value. In this connection a natural question
arises: what happens with Fisher’s asymptotics for the survival probability
under such a generalization and, in particular, how does it cross over to the
TASEP normalization constant. This is the first question we address in this
paper.

Specifically, we propose a semi-vicious walkers (SVW) model, which interpo-
lates between VW and TASEP. It is a model of interacting particles with partial
repulsion or attraction, where trajectory crossings are forbidden. The term par-
tial repulsion (attraction) means that the probability for the particle to jump
to an occupied site is not equal to zero like in TASEP but can be less (greater)
than that of a free particle. At the same time, the non-crossing constraint leads
to lack of probability conservation in the same way as in the VW model. The
strength of the interaction, which also characterizes the probability dissipation,
is a parameter of the model, which has the TASEP and VW as limiting cases
at the endpoints of its range.

In this article we obtain the large-time asymptotics of the survival proba-
bility. Its limiting case corresponding to VW is given by the above mentioned
result of Fisher, which yields the leading power law asymptotics. Later it was
reproduced with more mathematical rigor together with the constant prefactor
that was obtained for the particular initial configurations, where the particles
are separated by equal spaces [25]. In the case of a general initial configuration
of walkers this prefactor depends on the initial positions. This case has been
studied in [38].

Our results can be roughly divided into two parts. For generic values of
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the interaction strength, away from the point corresponding to the TASEP, the
probability dissipation is finite. It is intuitively clear that the main asymptotics
must be similar to the VW one. Indeed, we obtain the Fisher’s power law with
a constant prefactor that depends on the initial positions of the particles and
on the interaction strength. It is shown to diverge in the TASEP limit. The
second and probably the most interesting case is the transition region, which
interpolates between the VW and TASEP behavior. To probe into this region,
we consider a scaling limit of the survival probability, where the large time limit
and the TASEP limit of the interaction strength are combined. In this way we
obtain a scaling function of a single parameter that controls the transition from
VW to TASEP.

The second problem we address is the distribution of the integral particle
current in TASEP. A first example of such an exact distribution has been ob-
tained by Derrida and Lebowitz [8], who found the large deviation function for
the particle current in the TASEP confined to a ring. A specific property of
the finite system is that there is a finite relaxation time, after which the system
settles into a non-equilibrium stationary state, independent of initial conditions
[18]. Then, the tool used to study integral current fluctuations is, roughly speak-
ing, an analysis of the relaxation of the system subject to a perturbation into
the stationary state. Technically it is an analysis of the largest eigenvalue of the
perturbed Markov matrix governing the process.

In genuinely infinite systems the situation is more peculiar. In this case there
is no characteristic relaxation time scale. When starting away from the station-
ary state, the latter is never approached. In this case one needs to consider
actual time evolution of quantities of interest, which depend on initial condi-
tions. A major breakthrough in this direction has been achieved by Johansson,
[21]. He considered the TASEP evolution of an infinite cluster of particles,
which initially occupies all sites of the lattice to the left of a fixed site, and
calculated the distribution of the number of steps made by an arbitrary particle
in this cluster. Johansson’s solution has initiated a burst of activity in the field,
which exploited deep connections of the TASEP to the theory of random matrix
ensembles and the determinantal point processes. Results have been obtained
for different initial conditions and extended to many particle joint distributions
[34],[37],[39],[13],[4],. Remarkably, in the scaling limit these results provide pa-
rameter free universal distributions [35] of the fluctuations measured in the KPZ
characteristic scale, which is of order of t1/3 as time t grows to infinity [26]. This
is in contrast to the diffusive scale t1/2, which, according to the Central Limit
Theorem (CLT), characterizes the fluctuations of the distance travelled by a free
particle [12]. The large deviation limit of the single particle current distribution
has been studied in [19] in connection with the fluctuation dissipation relations.

Despite the great success in finding the distributions of single particle cur-
rents and their correlation functions, very few results on the integral particle
current, i.e. on the distance travelled by all particles, are available for driven
diffusive systems. In fact the only known exact result is the above mentioned
large deviation function for the integral particle current for the TASEP in a
ring [8] and its generalization for the partially asymmetric case [23], [28]. No
results beyond the large deviation scale, neither a generalization for an infinite
system has been proposed. On the other hand, extensive quantities like the in-
tegral current, are important ingredients of the thermodynamics of the models.
A knowledge of the character of their fluctuations could be of help for exten-
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sion of the thermodynamical formalism to irreversible systems. The present
paper makes a step in this direction. The problem we solve here is as follows.
We study the large time asymptotics of the distribution of the total number of
jumps made by a finite number of TASEP particles in an infinite lattice, given an
arbitrary initial configuration. The idea that allows us to consider this problem
in line with the previous one is the existence of a kind of fluctuation-dissipation
relation that unifies the dissipation of probability in SVW and the statistics of
fluctuations of the integrated particle current in TASEP. Specifically, an auxil-
iary parameter, which violates the probability conservation, can be introduced
into the evolution operator in TASEP to account for the total number of steps
made by particles, see e.g. [8]. This parameter plays a role similar to the one
played by the interaction in SVW, the two problems being equivalent after a
certain change of variables. Using this fact, we interpret the result obtained for
the survival probability in SVW as a generating function of the particle current
in TASEP. The latter, in its turn, can be used to reconstruct the form of the
current distribution.

Like those for SVW, the results obtained for the TASEP particle current
consist of two parts. The generic values of the interaction strength correspond to
the distribution of the particle current at the large deviation scale, i.e. describes
the deviations of order of time t. It turns out that it has a skew distribution
with asymmetric negative and positive tails. These tails are connected by a
middle part corresponding to the transition region. The latter yields the current
distribution at the diffusive scale, t1/2, which is shown to have a skew non-
Gaussian form, depending only on the total number of particles, and we suggest
to be universal for particles performing a driven diffusion.

One technical remark has to be made about the connection of our solution to
the theory of random matrix ensembles. It is this connection which enabled the
above mentioned progress in calculating the single particle current distributions
and their many particle generalizations. In our solution this connection has
also been exploited. Namely, the survival probability in the SVW model at
generic values of the interaction strength and exactly at the TASEP point can
be calculated in terms the Mehta integrals Im,k with k = 1/2 and k = 1,
which appear as normalization factors in the orthogonal and unitary Gaussian
ensembles of random matrices respectively [33]. Note, however, that the scaling
function obtained in the transition region for the system of m particles can be
reduced to neither of these integrals except of at three limiting points, where
it becomes Im,1/2,Im,1 and Im−1,1 respectively. Thus, we obtain a generalized
object, which interpolates between these three Mehta integrals, and, therefore,
in a sense unifies three different matrix ensembles. To our knowledge no such
generalization has appeared in the theory before.

The article is organized as follows. In Section 2 we formulate the SVW
model, state the results obtained and discuss their interpretation in terms of
the probability distribution of the particle current in TASEP. Sections 3-5 are
a technical part, where we prove the results outlined in Section 2. In Section 3
we solve the master equation for the SVW model. In Section 4 we obtain the
asymptotic formulas for the transition probabilities. In Section 5 we prove the
limiting properties of the function characterizing the SVW to TASEP transition.
Section 6 has a summary and conclusions.
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2 Model and results

2.1 Semi vicious walkers model

Consider m particles on a 1D infinite lattice. A configuration X of the system
is specified by an m-tuple of strictly increasing integers

X = {x1 < x2 < · · · < xm} , (1)

where xi is the coordinate of i-th particle. The strictly increasing order reflects
the exclusion condition, i.e. two particles cannot occupy the same site. We say
that the relation X ≤ Y holds for particle configurations if

x1 ≤ y1 ≤ x2 ≤ · · · ≤ xm ≤ ym. (2)

The SVW model is a random process, which is defined on a set of sequences of
configurations X0, X1, · · · , Xt, such that

X0 ≤ X1 · · · ≤ Xt. (3)

We refer to such a sequence as a trajectory of the system traveled up to time t.
Every such trajectory is realized with probability

P (X0, . . . , Xt) = T (Xt, Xt−1) · · ·T (X2, X1)T (X1, X0)P0(X0). (4)

P0(X) is the initial probability of the configuration X and the transition prob-
ability T (X, Y ), from the configuration Y to X, is defined as follows

T (X, Y ) = ϑ(xm − ym)
m−1∏
k=1

θ (xi − yi, xi+1 − yi) , (5)

where

ϑ(k) = (1 − p) δk,0 + pδk,1, (6)
θ (k, l) = (1 − p (1 − κδl,1)) δk,0 + pδk,1, (7)

and

0 < p < 1, (8)
1 − 1/p ≤ κ ≤ 1. (9)

This means that at each discrete time step a particle can jump forward with
probability p or stay put with probability 1 − p, provided that the next site is
empty. If the next site is occupied, the probability for a particle to stay put
is (1 − p(1 − κ)). The probability deficit p(1 − κ), corresponds to the process
when the particle jumps to the adjoining occupied site, which is forbidden. This
excluded process results in probability dissipation in this model. The form of the
transition probabilities corresponds to the backward sequential update, i.e. the
particles are updated starting from the m-th particles one by one in backward
direction. In particular limiting cases the model reduces to

1. κ = 0 - VW, a particle jumps forward with probability p or stays with
probability (1 − p), irrespective of whether the next site is occupied or
not. But then those realizations of the process where two particles come
to the same site must be removed from the statistical ensemble.
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2. κ = 1 - TASEP, a particle jumps forward with probability p or stays
with probability (1 − p) provided the adjoining site is empty. When the
next site is occupied the particle stays where it is with probability 1.

The TASEP with the backward sequential update was studied in [2] and [37],
where it was referred to as a fragmentation model. In the case κ = (1 − 1/p),
the probability for a particle to stay where it is when the next site occupied, is
zero. Therefore, the trajectories of particles passing via neighboring sites have
zero weight, i.e. they are removed from the ensemble as well as those which
meet at the same site. Therefore this situation resembles the vicious walks of
dimers. The range of κ given in (9) is due to the requirement for (1−p(1−κ)) to
be a probability. Positive values of κ correspond to repulsive interaction, while
negative values correspond to an attractive interaction. The domain κ > 1 is
also of interest in connection with the current fluctuation in TASEP, though it
does not have a probabilistic meaning in the context of SVW.

2.2 The results about the SVW model

Let us consider the quantity

Pt

(
X0

)
=

∑
X0≤X1···≤Xt

P (X0, . . . , Xt), (10)

where the sum is over all the trajectories of the system starting at the configu-
ration X0, i.e. P0 (X) = δX,X0 . This quantity is the partition function of the
statistical ensemble of the trajectories with the statistical weights defined above.
On the other hand, if we add the lacking processes allowing the particles to jump
to an occupied site, the value of Pt

(
X0

)
will have the meaning of probability

for all the particles not to meet up to time t. In Fisher’s original formulation
of such a process, two particles annihilate when getting to the same site. Then,
Pt

(
X0

)
is the probability for m particles to survive up to time t. Therefore,

we refer to this quantity as a survival probability. Below we formulate three
theorems, which specify the asymptotic behaviour of the survival probability in
the limit of large time for different parts of the range of the parameter κ. The
proof of these theorems is the content of Sections 4,5.

Remark 1 Two of the theorems below are stated and proved for complex val-
ued parameter κ and the third one for real κ > 1. Obviously, the quantity
obtained there has a meaning of the survival probability only for real κ varying
in the range (9). Consideration of other values of κ is justified by its later inter-
pretation in terms of the generating function of the moments of the total particle
current in the TASEP. In the latter case the complex values of κ turn out to be
meaningful and useful to reconstruct the total particle current distribution in
the TASEP.

2.2.1 The survival probability for SVW

Generic case, |κ| < 1 In this case the asymptotic behavior of the survival
probability Pt

(
X0

)
as t → ∞ is given by the following theorem.

6



Theorem 1 Let κ ∈ C be a fixed complex number from the domain |κ| < 1,
and let

∣∣x0
i − x0

j

∣∣ < ∞ for any i, j = 1, . . . , m. Then, as t → ∞ the survival
probability Pt

(
X0

)
for m particles is

Pt

(
X0

)
= A

(
κ; X0

)
[tp(1 − p)]−

m(m−1)
4

[
1 + O

(
(log t)3 t−1/2

)]
, (11)

where the prefactor is given by

A(κ; X0) =
2m

∏m
l=1 Γ (l/2 + 1)

(1 − κ)
m(m−1)

2 πm/2
det

[
gi,j(x0

m − x0
i ; κ)

]
1≤i,j≤m

(12)

and where the function gi,j(x; κ) is defined by

gi,j(x; κ) =
∮

C0

dξ

2πi
(κ + κξ − 1)i−1 (1 + ξ)x

ξj
. (13)

Thus, in the range κ < 1, up to the factor A(X0; κ), which captures the
dependence on the initial configuration X0, the survival probability reproduces
Fisher’s power law. All the dependence on X0 is in fact hidden in the deter-
minantal part of A(X0; κ). In some particular cases the determinant can be
simplified to a more transparent expression. For example, for equidistant initial
conditions,

x0
m − x0

i = a (m − i) , (14)

where a is a positive integer, it can be calculated explicitly:

det
[
gi,j(x0

m − x0
i ; κ)

]
1≤i,j≤m

= (a + κ − aκ)
m(m−1)

2 . (15)

In the limit κ → 0 the determinant reduces to

det[gi,j(x0
m − x0

i ; 0)] =
∏

1≤i<j≤m

x0
j − x0

i

j − i
. (16)

Then, up to rescaling of space and time, one recovers the result [38] for VW:

A(0; X0) =
∏

1≤i<j≤m

(
x0

j − x0
i

)


π−m
4 2−

m(m−2)
4

m
2∏

l=1

1
(2l−1)! ; evenm

π
1
4−m

4 2−
(m−1)2

2

(m−1)
2∏

l=1

1
(2l)! ; oddm

. (17)

In the limit κ → 1, we have

det
[
gi,j(x0

m − x0
i ; 1)

]
1≤i,j≤m

= 1. (18)

This limit corresponds to the TASEP. Hence the asymptotics must change, as
the probability conservation is restored. The signature of this fact is the diver-
gence of the term A(κ; X0) that takes place in this limit. Specifically, (12) and
(18) suggests that as κ approaches one, A

(
κ; X0

)
diverges as (1 − κ)−m(m−1)/2.

Comparing the exponent of this expression with the one of the time decay
t−m(m−1)/4, we can guess that the transition takes place on the scale (1− κ) ∼
1/

√
t. This hypothesis is justified below.
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Generic case, κ > 1 In this case no values of κ fall into the range (9).
Therefore, according to the Remark 1, the result formally obtained for Pt

(
X0

)
does not have a probabilistic meaning in terms of SVW. However, it is still
meaningful for the description of current fluctuation in the TASEP.

Theorem 2 Let κ ∈ (1,∞) be a fixed real number, and let
∣∣x0

i − x0
j

∣∣ < ∞ for
any i, j = 1, . . . , m. Then, as t → ∞, the survival probability Pt

(
X0

)
for m

particles is

Pt

(
X0

)
= (1 − p + κp)(m−1)t (1 − p + κ1−mp

)t
(19)

× [m]m−1
κ κx0

1+···+x0
m−1−(m−1)x0

m

[m − 1]κ!

[
1 + O

(
(log t)3 t−1/2

)]
Here we use the common notations

[m]q =
1 − qm

1 − q
(20)

for the q-number and
[m]q! = [1]q · · · [m]q (21)

for the q-factorial. Note that the q-numbers turn to usual numbers [m]q → m
in the limit q → 1.

Transition regime κ → 1 Consider the limit

t → ∞, κ → 1, (1 − κ)
√

t = const. (22)

We introduce the parameter

α = lim
t→∞

[
(1 − κ)

√
tp (1 − p)

]
. (23)

Theorem 3 Let the condition
∣∣x0

i − x0
j

∣∣ < ∞ hold for all i, j = 1, . . . , m.
Then,in the limit (22), for the parameter α ∈ C defined in (23) taking any
fixed complex value, Pt

(
X0

)
converges to

Pt = fm (α)

[
1 + O

(
(log t)3√

t

)]
, (24)

where the function fm (α) has the form of a multiple integral:

fm (α) =
(−1)

m(m−1)
2

(2π)
m
2 2! · · · (m − 2)!

×
∞∫

−∞
du1

∞∫
u1

du2 · · ·
∞∫

um−1

dum

∞∫
0

dν2 · · ·
∞∫
0

dνm (25)

× e−
1
2 u2

1

m∏
i=2

νi−2
i e−

1
2 (ui+νi)

2−ανi∆ (u1, ν2 + u2, . . . , νm + um) ,

where
∆ (x1, . . . , xm) =

∏
1≤i<j≤m

(xi − xj) (26)

is the Vandermonde determinant.
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Figure 1: The log-log plot of the function f2(α) in the range α > 0.

The argument of Pt in (24) can be omitted as the dependence on the initial
configuration is lost in the limit under consideration. The limiting behaviors of
fm(α) match the TASEP and VW asymptotics. Indeed, we prove in Section 5
that

lim
�α→∞

α
m(m−1)

2 fm (α) =
1
m!

2m

πm/2

m∏
l=1

Γ (l/2 + 1) , (27)

fm (0) = 1 (28)

lim
�α→−∞

e−α2 m(m−1)
2 fm (α) =

mm−1

(m − 1)!
(29)

In (27) and (29) the imaginary part of α is implied to take an arbitrary fixed
value. The proof of these three limits given in Section 5 is done by reducing
fm (α) to different cases of Mehta integrals, Im,1/2, Im.,1 and Im−1,1 respectively,
which are well known in the theory of Gaussian random matrix ensembles. [33].

The above results can be illustrated by the example of the two particle case,
m = 2, when the integral (25) for f2 (α) simplifies significantly.

f2 (α) = eα2
Erfc (α) . (30)

Here Erfc (α) is the complementary Error function

Erfc (α) =
2√
π

∞∫
α

dxe−x2
. (31)

In Fig. 1 we show how f2 (α) interpolates between the SVW and TASEP limiting
cases, which are (27) and (28) respectively.

2.3 Current fluctuations in TASEP

Consider the process with the transition weights T̃ (X, Y ) defined similarly to
(5) but where the functions ϑ(k) and θ (k, l) are replaced by

ϑ̃(k) = (1 − p̃) δk,0 + eγ p̃δk,1, (32)

θ̃ (k, l) = (1 − p̃ (1 − δl,1)) δk,0 + eγ p̃δk,1. (33)
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Here 0 < p̃ < 1 and γ is a complex-valued parameter. It is not difficult to see
that these transition weights correspond to the TASEP except that for each
particle, the probability p̃ to jump is multiplied by an additional factor eγ , i.e.

eγYtPTASEP (X0, . . . , Xt) = T̃ (Xt, Xt−1) · · · T̃ (X1, X0)P0(X0), (34)

where PTASEP (X0, . . . , Xt) is the probability for a sequence of particle config-
urations X0, . . . , Xt, to occur in the TASEP for t successive steps and Yt is the
total number of jumps made by all particles in this sequence of configurations.
Thus, one can calculate the moment generating function for the cumulative
particle current as follows,〈

eγYt
〉

TASEP
=

∑
X0≤X1···≤Xt

eγYtPTASEP (X0, . . . , Xt). (35)

On the other hand, we can see that, if we define

κ = e−γ , (36)

p =
p̃

(1 − p̃) e−γ + p̃
, (37)

then the following relation exists between the transition weights T̃ (X, X ′) de-
fined in (32),(33) and those of SVW, (6),(7),

(1 − p̃)−m T̃ (X, X ′) = (1 − p)−m T (X, X ′). (38)

As a result we have〈
eγYt

〉
TASEP

= (1 + p̃ (eγ − 1))mt Pt

(
X0

)
, (39)

where Pt

(
X0

)
is the survival probability calculated for the SVW model, and

the parameters κ and p of SVW are related to the parameters p̃, γ of TASEP by
(36), (37). The function (39) encodes all information about the distribution of
the integrated particle current. Thus, we can apply the Theorems 1-3 to obtain
the asymptotic form of this distribution.

Large deviation function. It follows from the Theorems 1 and 2 and the
formula (39) that for fixed γ ∈ R the asymptotic form of the generating function
of the particle current Yt is as follows

〈
eγYt

〉
TASEP

�


(1+p̃(eγ−1))mt+ m(m−1)

2

[teγ p̃(1−p̃)]
m(m−1)

4
A
(
e−γ , X0

)
γ > 0

(1 − p̃ (1 − emγ))t (1−e−γm)m−1
eγ

∑m−1
i=1 (x0

m−x0
i )

(1−e−γ )···(1−e−γ(m−1)) γ ≤ 0
.

(40)
From here we conclude that a scaled cumulant generating function of the random
variable Yt/t exists

λ (γ) ≡ lim
t→∞

1
t

log
〈
eYtγ

〉
TASEP

=
{

m log (1 + p̃ (eγ − 1)) γ ≥ 0
log (1 − p̃ (1 − emγ)) γ ≤ 0 .
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It is convex and differentiable everywhere. Therefore, we refer to the Gärtner-
Ellis theorem [15],[9] to show that the random variable vt satisfies the large
deviation principle with a rate function

I (v) ≡ lim
t→∞

1
t

log P (Yt/t = v) = sup
γ

(γv − λ (γ)) .

The solution of the maximization problem yields

I (v) =
{

mB (v/m) v ≥ mp̃
B (v/m) v ≤ mp̃

,

where B (v) is the usual rate function of the Bernoulli process

B (v) = (1 − v) log
1 − p

1 − v
+ v log

p

v
.

Central limit theorem scaling. The transition regime corresponds to the
following scaling limit

t → ∞, γ → 0, γ
√

t = const. (41)

To translate the results obtained for this case we consider the random variable

y = lim
t→∞

Yt − mp̃t√
tp̃ (1 − p̃)

, (42)

where the convergence is in distribution. Taking the limit (41) in (39), using
the Theorem 3 and noting that p̃ → p as γ → 0 we obtain

〈eαy〉TASEP = emα2/2fm (α) , (43)

where α is an arbitrary complex valued parameter related to γ via -

α = lim
t→∞ γ

√
tp (1 − p). (44)

The random variable y is the rescaled deviation of the integrated current Yt from
mp̃t, i.e. from the average value of Yt for m non-interacting particles jumping
with probability p̃. Note that y is the variable that, in the case of free non-
interacting particles, satisfies the conditions for the applicability of the Central
Limit Theorem (CLT). According to the CLT the probability density function
(PDF) of y for m independent particles is the Gauss distribution,

P free
m (y) = exp

(−y2/ (2m)
)
/
√

2πm (45)

Correspondingly, the generating function of its moments is

〈eαy〉free = exp
(
mα2/2

)
, (46)

which is the first factor in the moment generating function (43). Therefore, the
form of the second factor, fm(α), shows how the distribution of y differs from
the one for free particles.
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The moment generating function contains all the information about the orig-
inal distribution. In particular, the cumulants of y are given by the derivatives
of its logarithm at α = 0,

〈yn〉c =
∂n

∂αn
log 〈eαy〉TASEP |α=0 . (47)

The value of the first derivative, i.e.,

〈y〉c = 〈y〉 = f ′
m (0) , (48)

shows how the difference between the mean velocity vm of the center of mass of
the particles and that of free non-interacting particles, which is p̃, decays with
time t,

vm =
〈Yt〉
mt

� p̃ +
〈y〉c√

t

√
p̃ (1 − p̃)

m
〈y〉c . (49)

A nonzero value of f ′
m (0) implies that this difference is of order of t−1/2. As

the TASEP interaction slows down the particle motion, one expects it to be
negative, i.e.

f ′
m (0) < 0. (50)

The second cumulant〈
y2
〉

c
=
〈
y2
〉− 〈y〉2 = m + f ′′

m (0) − (f ′
m(0))2 (51)

is related to the diffusion constant ∆m of the center of mass.

∆m ≡ 1
m2

lim
t→∞

〈
Y 2

t

〉− 〈Yt〉2
t

=
p̃ (1 − p̃)

m2

〈
y2
〉

c
(52)

The next cumulants, e.g.〈
y3
〉

c
≡ 〈

y3
〉− 3

〈
y2
〉 〈y〉 + 2 〈y〉3 = (log fm (α))′′′

∣∣
α=0

, (53)〈
y4
〉

c
≡ 〈

y4
〉− 4

〈
y3
〉 〈y〉 − 3

〈
y2
〉2

(54)

+12 〈y〉2 〈y2
〉− 6 〈y〉4 = (log fm (α))(4)

∣∣∣
α=0

,

quantify the discrepancy of the distribution from a Gaussian form, being iden-
tically zero for the latter.

The asymptotical behavior of the generating function at large absolute values
of �α can be readily obtained from the ones of fm(α), (27),(29).

〈eαy〉TASEP �
{

α− 1
2 m(m−1)e

1
2 mα2 2m ∏m

l=1 Γ(l/2+1)

πm/2m!
, �α → ∞

e
1
2 α2m2 mm−1

(m−1)! , �α → −∞ (55)

The PDF of the random variable y can be obtained as an inverse Laplace trans-
form of its moment generating function (43)

Pm(y) =

β+i∞∫
β−i∞

emα2/2−αyfm (α)
dα

2πi
(56)

12



As the function fm (α) is bounded and analytic in any vertical strip of finite
width, the parameter β can be chosen arbitrarily. The asymptotic results (55)
for the generating function can be used in the integral (56) to evaluate the
asymptotics for PDF Pm(y). Choosing β = y/m for y → ∞ and β = y/m2 for
y → −∞ we obtain

Pm(y) �


(

m
y

)m(m−1)
2

e−
y2
2m

∏m
l=1 Γ(l/2+1)

m!
√

2πm
2m

πm/2 , y → ∞
e−

y2

2m2 mm−2√
2π(m−1)!

, y → −∞
. (57)

Thus, the form of the distribution Pm(y) is far from being symmetric, having
tails of two Gaussian-like functions with different dispersions, m2 and m, on
the left and right respectively, the latter also multiplied by ”Fisher’s factor”
y−m(m−1)/2.

Let us compare these result with the data obtained from Monte Carlo simu-
lations. We modelled the TASEP for m = 2, 3, 4, 5 particles, which have evolved
for t = 106 time-steps, the statistics having been collected from 106 samples. We
would like to compare the data obtained for the generating function 〈eαy〉 and
the PDF Pm (y) with our predictions. An explicit evaluation of these functions
requires detailed analysis of the function fm (α), which is given by the multiple
integral (25). For arbitrary m this needs a significant calculational effort, which
is beyond the goals of the present article. Fortunately, for m = 2 the function
f2 (α) is simple enough, being given by (30), and we can use it for plotting
the generating function and the distribution. In Fig. 2 we show a plot of the
logarithm of the m = 2 moment generating function, whose analytic expression
is

〈eαy〉TASEP = e2α2
(1 − Erf (α)) . (58)

It has a skew convex form growing more rapidly to the left than to the right, with
a minimum at α = 0.432752. One can see good agreement with the numerical
data in the central part of the graph. There is some discrepancy at the tails,
which can be attributed to the finite-time corrections, i.e. the lack of statistics
of large events at the finite period of measurement, which becomes significant
when the absolute value of α is large.

The function (58) allows a calculation of any derivatives, and, hence, of any
cumulants of the random variable y. In Table 2.3 we show the first four cumu-
lants for m = 2, the case of two particles. Their values are in good agreement
with the results from the Monte Carlo simulations. In Fig. 3 we show the result

Analytic Numerical Analytic Monte Carlo

〈y〉c −2π−1/2 -1.12838 -1.12545〈
y2
〉

c
4 − 4π−1 2.72676 2.72518〈

y3
〉

c
4(π − 4)π−3/2 -0.616636 -0.617642〈

y4
〉

c
32(π − 3)π−2 0.459083 0.498263

Table 1: Cumulants of the random variable y.

of numerical evaluation of the integral (56) for m = 2. There is a very good
agreement with the simulation results. At first glance the form of the distribu-
tion shown on Fig. 3a appears Gaussian-like. A more accurate impression of the

13
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Figure 2: Plot of the logarithm of the moment generating function for m = 2.
Solid line is the plot of the formula (58). Dotted line is the result of Monte
Carlo simulations.

P2�y�

y
�10 �5 5 10

0.05

0.10

0.15

0.20

0.25

logP2��y�

y�10 �5 5 10

�25

�20

�15

�10

�5

a b

Figure 3: Probability density function Pm(y) for m = 2 particles (a) and its
logarithm (b). The solid line shows the theoretical predictions for the distribu-
tions.

form of the distribution is given by the logarithmic plot of Fig. 3b which shows
that the distribution is actually skew, decreasing more rapidly as y grows than
as it decreases.

Simulation results obtained for more than two particles can be tested against
the asymptotical formulas (57) for the tails of the distribution Pm (y). In Fig. 4
we plot the distributions measured for m = 2, 3, 4, 5 particles, (Fig. 4a), and its
logarithm, (Fig. 4b), the latter being compared with the graphs of (57).

One can see that for all the four graphs the left tails are perfectly fitted
already for rather small values of y. A good fit of the right tail takes place only
for m = 2. For m = 3 only a few data points approach the asymptotical line,
i.e. in this case the right asymptotical regime is actually at the borderline of
the statistics. In the cases m = 3, 4 the statistics available is clearly not good
enough to reach the asymptotical regime. Significantly larger evolution time
and statistics would have to be considered.
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Figure 4: Probability density function Pm(y) for m = 2, 3, 4, 5 particles (a) and
its logarithm (b). The solid lines show the theoretical asymptotics of the tails
of the distributions.

3 The master equation

From now on we consider only the SVW model dependent on the parameters
p and κ. Our first step is to calculate the probability Pt

(
X, X0

)
of transition

from the configuration X0 to X for arbitrary time t:

Pt

(
X, X0

)
=

∑
X0≤X1···≤Xt≡X

P (X0, . . . , Xt). (59)

The method of finding the transition probability was first developed by Schütz
for the continuous time TASEP [40], who used the Bethe Ansatz first applied
to the ASEP by Gwa and Spohn [18]. Here we follow a similar procedure. The
transition probability obeys the master equation

Pt

(
X, X0

)
=
∑
X′

T (X, X ′)Pt−1(X ′, X0); (60)

the transition weights T (X, X ′) being defined as above, (5)-(7). The problem of
finding the eigenvectors and eigenvalues of the matrix T (X, X ′) can be solved
by the Bethe Ansatz technique. As this technique is rather standard and has
been reviewed in many monographs, we simply state the results here. For details
of similar derivations, the reader can consult for example with the review [5].
As a result we obtain the solution of the left and right eigenvalue problems for
the Markov matrix T (X, X ′):

Λ (Z)ΨZ (X) =
∑
X′

T (X, X ′)ΨZ (X ′) , (61)

Λ (Z)ΨZ (X) =
∑
X′

T (X ′, X)ΨZ (X ′) (62)

parametrized by an m-tuple of complex parameters Z = {z1, · · · , zm} . The
corresponding eigenvalue is expressed in terms of these parameters,

Λ (Z) =
m∏

i=1

(1 − p + p/zi) , (63)

15



and the eigenvectors are given by the following determinants

ΨZ (X) = det
(
z

xj

i (1 − κzi)i−j
)
1≤i,j≤m

, (64)

ΨZ (X) = det
(
z
−xj

i (1 − κzi)j−i
)

1≤i,j≤m
. (65)

It is not difficult to check that these two eigenfunctions can be used to construct
the resolution of the identity operator

1
m!

∮
ΨZ (X)ΨZ (X ′)

m∏
i=1

dzi

2πizi
= δX,X′ , (66)

where the integration over each zi, i = 1, . . . , m, is along a contour of integration
which has to satisfy the requirement that the pole of the wave function at
z = 1/κ has to lie in the exterior. Then the solution of the initial value problem
for the master equation is given by

Pt

(
X, X0

)
=

1
m!

∮
Λt (Z)ΨZ (X)ΨZ

(
X0

) m∏
i=1

dzi

2πizi
. (67)

Finally we end up with the following integral expression for the transition prob-
ability

Pt

(
X, X0

)
=

∮
Λt (Z)

m∏
i=1

[
z

xi−x0
m

i

(1 − κzi)i−1

]
(68)

× det
(

z
x0

m−x0
j

i (1 − κzi)j−1

)
1≤i,j≤m

p∏
i=1

dzi

2πizi
.

The integration can be easily performed by counting the residues. The result is
a determinant of an m × m matrix of the form similar to the one obtained for
the discrete time TASEP with backward update ( [2] , [37]). Note that in the
case of vicious walkers, κ = 0, the eigenfunctions are of free fermion type

ΨZ (X) = det
(
z

xj

i

)
1≤i,j≤m

, (69)

ΨZ (X) = det
(
z
−xj

i

)
1≤i,j≤m

. (70)

and the integration yields the famous Lindström-Gessel-Viennot theorem [30],
[16].

Pt

(
X, X0

)
= det

[
F0

(
xi − x0

j , t
)]

1≤i,j≤m
, (71)

where

F0 (x, t) = px (1 − p)t−x

(
t
x

)
, (72)

These formulas serve as a starting point for the asymptotical analysis of the
survival probability.
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4 Asymptotic form of the survival probability

To obtain the survival probability Pt

(
X0

)
for SVW we have to sum the tran-

sition probability Pt

(
X, X0

)
over the set of all final configurations X :

Pt

(
X0

)
=
∑
{X}

Pt

(
X, X0

)
. (73)

We solve this problem in the limit t → ∞. For pedagogical reasons we first out-
line the derivation for the VW model, which simply reproduce Rubey’s results,
[38]. The procedure we use amounts to an asymptotical analysis of the expres-
sion for Pt

(
X, X0

)
by means of the saddle point approximation for the integral

(67), which reduces the sum over final configurations to known integrals. The
main ingredients of the derivation for the VW model are then applied similarly
to the SVW model but with some modifications.

4.1 Vicious walkers

In the case of VW (κ = 0), the integral (68) takes the form∮
Λt (Z)

m∏
k=1

z
xk−x0

m

k det(z
x0

m−x0
j

i )1≤i,j≤m

m∏
l=1

dzl

2πizl
. (74)

Here, the determinant under the integral can be expressed in terms of the Van-
dermonde determinant

∆ (Z) ≡ det(zm−j
i )1≤i,j≤m =

∏
1≤i<j≤m

(zi − zj) , (75)

and the Schur function [31]

sχ(z1, . . . , zm) ≡ det
(
z

χj+m−j
i

)
/∆ (Z) (76)

parametrized by the partition χ = (χ1 ≥ χ2 ≥ · · · ≥ χm ≥ 0) defined by

χ = (x0
m − x0

1 − m + 1, x0
m − x0

2 − m + 2, · · ·), (77)

as follows:
det(zx0

m−x0
i

i )1≤i,j≤m = ∆ (Z) sχ (Z) . (78)

Thus (74) can be rewritten in the following form

PT

(
X, X0

)
=
∮

∆ (Z) sχ (Z)
m∏

i=1

ethi(zi) dzi

2πizi
, (79)

where
hi(z) = log (1 − p + p/z) + vi log z (80)

and

vi =
xi − x0

m

t
. (81)
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Now we are ready to estimate the integral asymptotically as t → ∞. We assume
that the differences

(
x0

i − x0
j

)
are kept bounded for any i and j. The saddle

point of the function under the integral is defined by the equation

h′
i(z

∗
i ) = 0, (82)

which yields

z∗i =
(1 − vi) p

(1 − p) vi
. (83)

In the vicinity of the saddle point hi(z) has an expansion

hi(z∗i + ξ) = log

[(
1 − p

1 − vi

)1−vi
(

p

vi

)vi
]

(84)

+
1
2

(
1 − p

p

)2
v3

i

1 − vi
ξ2 + O(ξ3).

The integration contours can be deformed to a circle centered at 0, crossing the
real axis at z∗i . Writing points on the circle as zi = z∗i eiφi , we have

�(hi(zi)) = h(z∗i ) +
1
2

log
[
(1 − vi(1 − cos(φi))2 + v2

i sin2(φi)
]
. (85)

It follows that there is a single maximum at φi = 0. Moreover, since all deriva-
tives are bounded provided vi < 0, the saddle-point approximation holds uni-
formly in xi. (Note that (74) is zero if vi > 1, and if vm = 1 then the probability
pt can be extracted as a factor, the remaining integral over z1, . . . , zm−1 being
of the same form.) It is easy to see that the contribution to the sum over X
from points with vi > p + ε for any fixed ε > 0 is negligible in the limit t → ∞.
(Below, we shall see that the effective range of the summation is in fact even
smaller.) The saddle-point approximation [11] now yields

Pt

(
X, X0

)
=
(

p

1 − p

)m(m−1)
2 m∏

i=1

v1−m
i e

thi

(
(1−vi)p

(1−p)vi

)
√

2πtvi(1 − vi)
× (86)

∏
1≤i<j≤m

(vj − vi) sχ

(
(1 − v1) p

(1 − p) v1
, . . . ,

(1 − vm) p

(1 − p) vm

)(
1 + O

(
1
t

))
.

The next step is to perform the summation (73) over the range of the final
configurations X ∈ {

x0
1 ≤ x1 < · · · < xm < ∞}

. For this we need to demon-
strate that (86) holds uniformly in X . To this end we first show that the main
contribution to the sum comes from the domain

pt −√
t log t ≤ x1 < · · · < xm ≤ pt +

√
t log t. (87)

Indeed, hi

(
(1−vi)p
(1−p)vi

)
is a concave function of vi in the domain vi ∈ (0, 1) with a

single maximum vi = p. It follows then for |xi − pt| >
√

t log t

e
thi

(
(1−vi)p

(1−p)vi

)
< e

thi

(
1−√

t log t/(1−p)
1+

√
t log t/p

)
= e−

(log t)2

2p(1−p)

[
1 + O

(
log t√

t

)]
(88)
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All the other factors in (86) are at most of polynomial order in t, while the total
number of nonzero terms in the sum of interest (73) is O (tm). Therefore, the

contribution from the complement of (87) being of order of O

(
tse−

(log t)2

2p(1−p)

)
for

some constant s is asymptotically negligible compared to the contribution from
(87).

In the latter one can approximate the function hi

(
(1−vi)p
(1−p)vi

)
by the second

term of its Taylor expansion at vi = p, which yields

Pt

(
X, X0

)
=

1

(2π)
m
2 (tp(1 − p))

m2
2

sχ (1, . . . , 1) (89)

m∏
i=1

exp

(
−
(
xi − x0

m − pt
)2

2tp (1 − p)

) ∏
1≤i<j≤m

(xj − xi)

[
1 + O

(
(log t)3√

t

)]
.

We now have to evaluate following sum in the limit t → ∞,

∑
−√

t log t≤x1<···<xm≤ √
t log t

m∏
i=1

e−
x2

i
2tp(1−p)

∏
1≤i<j≤m

(xj − xi) . (90)

This can be done by means of the following lemma:

Lemma 1 Let h : Rm → R be a twice differentiable function of at most poly-
nomial growth. Then as δ → 0,

δm
∑

y1<...<ym; yi∈δZ

h(y1, . . . , yn)
m∏

i=1

e−
1
2 y2

i (91)

=
∫ ∞

−∞
dy1

∫ ∞

y1

dy2 . . .

∫ ∞

ym−1

dymh(y1, . . . , ym)e−
1
2

∑m
i=1 y2

i + O(δ).

Proof We subdivide the domain −∞ < x1 < . . . < xm < ∞ into hypercubes
of the form

Bδ(y1, . . . , ym) = {(x1, . . . , xm) : max |xi − yi| ≤ δ

2
}, (92)

where yi ∈ δZ and y1 < y2 < . . . < ym. The remaining region is small and
its contribution will be estimated shortly. We then write, for (x1, . . . , xm) ∈
Bδ(y1, . . . , ym),∣∣∣h(x1, . . . , xm)e−

1
2 (x2

1+...+x2
m) − h(y1, . . . , ym)e−

2
2 (y2

1+...+y2
m)
∣∣∣ (93)

≤ sup
(u1,...,um)∈Bδ(y1,...,ym)

m
max
i=1

∣∣∣∣ ∂

∂ui
h(u1, . . . , um)e−

1
2 (u2

1+...+u2
m)

∣∣∣∣ |xi − yi|.

Now,

∂

∂ui
h(u1, . . . , um)e−

1
2 (u2

1+...+u2
m) (94)

=
(

∂

∂ui
h(u1, . . . , um) − uih(u1, . . . , um)

)
e−

1
2 (u2

1+...+u2
m)
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which is easily seen to be bounded by Ce−(y2
1+...+y2

m)/2 for some constant C > 0.
It follows from the convergence of the sum

∑
y∈δZ

δe−y2/2 uniformly in δ that
the difference between the integral over the region⋃

y1<...<ym; yi∈δZ

Bδ(y1, . . . , ym) (95)

and the sum is of order δ. There remains the integral over the complementary
region, but this is obviously of order δ as the integral converges and the region
has width δ.

Then, after going to rescaled variables yi = xi/
√

tp (1 − p) and writing δ =
1/
√

tp(1 − p) the sum (90) reduces to the integral

(tp (1 − p))
m(m+1)

4

∞∫
−∞

dx1 · · ·
∞∫

xm−2

dxm−1

∞∫
xm−1

dxm

m∏
i=1

e−
1
2 x2

i

∏
1≤i<j≤m

|xj − xi|

(96)
(the range of summation is extended to (−∞ ≤ x1 < · · · < xm ≤ ∞) by the
same argument as above. Note that the absolute value signs |xj − xi|, though
redundant in this range, are nevertheless useful as they make the expression
symmetric with respect to permutations of the variables x1, . . . , xm. One, then,
can use this fact to extend the integration to the whole Rm, which yields an
additional factor of m!, which has to be compensated in the end. As a result
we obtain

Pt

(
X0

)
=

1

[p(1 − p)t]m(m−1)/4

Im,1/2

(2π)m/2
m!

sχ (1, . . . , 1)

[
1 + O

(
(log t)3√

t

)]
(97)

where

Im,k ≡
∞∫

−∞
dyp · · ·

∞∫
−∞

dy2

∞∫
−∞

dy1 exp
(
−1

2

∑m

i=1
y2

i

)
×

∏
1≤i<j≤m

|yj − yi|2k

= (2π)m/2
m∏

l=1

Γ (lk + 1)
Γ(k + 1)

(98)

is the Mehta integral [33], which first appeared in the context of Gaussian ran-
dom matrix ensembles. Finally, one can use the following formula for the Schur
function [31]

sχ (1, . . . , 1) =
∏

1≤i<j≤m

χi − i − χj + j

j − i
, (99)

resulting in the following expression for the survival probability:

Pt

(
X0

)
=

1

[p(1 − p)t]m(m−1)/4

2m

πm/2

m∏
l=1

Γ (l/2 + 1)
l!

(100)

×
∏

1≤i<j≤m

(
x0

j − x0
i

) [
1 + O

(
(log t)3√

t

)]
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After reexpressing the gamma functions in terms of factorials we obtain the
form given in (17).

4.2 Semi-vicious walkers

4.2.1 The case of generic κ = 1

To study the asymptotic behaviour of the survival probability for the case of
general κ, one can start with the following integral representation for the tran-
sition probability

Pt

(
X, X0

)
=

m∏
i=1

∮
C0

dzi

2πizi

dξi

2πiξi

(
1 − κξi

1 − κzi

)i−1

ξ
x0

m−x0
i +1

i z
xi−x0

m
i

×Λt (Z)
∏

1≤i,j≤m

1
ξi − zj

∏
1≤i<j≤m

(zi − zj)(ξj − ξi), (101)

where the integration in each variable is along a small circle around zero, |zi| <
|ξj | for any i, j = 1, . . . , m. This representation can be reduced to the form (68)
by direct integration over each ξj (j = 1, . . . , m). This is done by summing the
contributions to the integral coming from all the poles ξj = zi, i = 1, . . . , m.

Though the most of analysis of the large t asymptotics of this expression
is similar to the one for VW, one important difference exists. The expressions
under the integrals over zi, i = 2, . . . , m, have singularities at zi = 1/κ, the
poles of the form (1 − κzi)

1−i, which can be located between the origin and the
saddle point. In this case the contour being deformed to the steepest descent
one, crosses this singularity and its contribution must then be extracted from the
saddle point contribution. While for |κ| < 1 this does not affect the asymptotics
of the sum over x1, . . . , xm, evaluated subsequently, for |κ| > 1 its contribution
turns out to be dominant.

It is, however, technically difficult to calculate the residue at the multiple
pole of the complicated expression. To avoid this calculation and to evaluate
both cases in one go, we expand the term (1 − κzi)

1−i into a series in powers of
(κzi) and then integrate it term by term in the saddle point approximation. As
a result we obtain Pt

(
X, X0

)
in the form of an (m − 1) - fold series

Pt

(
X, X0

)
=

m∏
k=1

∮
C0

dξi

2πiξk
(1 − κξk)i−1

ξ
x0

m−x0
i +1

k (102)∏
1≤i<j≤m

(ξj − ξi)
∑

{n2,...,nm}∈Z
m−1
≥0

A ({ξi, vi}m
i=1 , {nk}m

i=2 , )

where

A ({ξi, vi}m
i=1 , {nk}m

i=2) =(
p

1 − p

)m(m−1)
2 m∏

i=2

κni

(
i + ni − 2

ni

)
(103)

×
m∏

i=1

v1−m
i e

thi

(
(1−vi)p

(1−p)vi

)
√

2πtvi(1 − vi)

∏
1≤i<j≤m

(vj − vi)
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×
∏

1≤i,j≤m

(
ξi − (1 − vj) p

(1 − p) vj

)−1 (
1 + O

(
1
t

))
,

v1 =
x1 − x0

m

t
(104)

vi =
xi − x0

m + ni

t
, i = 2, . . . , m.

The next step is to use this approximation to perform the summation of (102)
over the domain {x0

1 < x1 < x2 < · · · < xm < ∞}. The effective range of this
summation depends crucially on the behaviour of the other sum in n2, . . . , nm.
Namely, the effective summation range is different depending on whether the
value of κ is greater or less than one, when the term κni is decreasing or in-
creasing respectively. We consider these two cases separately.

The case |κ| < 1 Here κ takes arbitrary complex values in the domain
|κ| < 1. As in the case of vicious walkers, we argue that the exponential part
exp

[
thi

(
(1−vi)p
(1−p)vi

)]
makes the whole expression negligible beyond the range

p − t−1/2 log t ≤ vi ≤ p + t−1/2 log t. (105)

In addition, for ni > (log t)2 / |log |κ|| we have

κni

(
i + ni − 2

ni

)
= O(t− log t (log t)2(i−2)), (106)

so that we can limit the summation over ni to ni ≤ (log t)2 / |log |κ||. There-
fore, ni is negligible compared to xi in the domain (105) and can be ne-
glected in the definition (104) of vi. In the range (105) we can approximate
A ({ξi, xi/t}m

i=1 , {nk}m
i=2 , ) by the leading term of its Taylor expansion at vi = p,

i = 1, . . . , m.

A ({ξi, xi/t}m
i=1 , {nk}m

i=2) =(
1

tp (1 − p)

)m(m−1)
2 m∏

i=2

κni

(
i + ni − 2

ni

)
(107)

×
m∏

i=1

e−
(xi−pt)2

2p(1−p)t√
2πtp(1 − p)

∏
1≤i<j≤m

(xj − xi)

×
m∏

i=1

(ξi − 1)−m

(
1 + O

(
(log t)3√

t

))

One can see that the terms dependent on {xi} and {ni} decouple and the terms
dependent on n2, . . . , nm can be summed up.

∑
{n2,...,nm}∈Z

m−1
≥0

m∏
i=2

κni

(
i + ni − 2

ni

)
= (1 − κ)−

m(m−1)
2 (108)
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The remaining sum over xi for i = 1, . . . , m is transformed to an integral using
Lemma 1: ∑

x0
1<x1<x2<···<xm

∑
{n2,...,nm}∈Z

m−1
≥0

A ({ξi, xi/t}m
i=1 , {nk}m

i=2) (109)

= (tp (1 − p))−
m(m−1)

4 (2π)−
m
2 (1 − κ)−

m(m−1)
2

m∏
i=1

(ξi − 1)−m

×
∞∫

−∞
dy1e

−y2
1/2

∞∫
y1

dy2e
−y2

1/2 · · ·
∞∫

ym−1

dyme−y2
1/2

∏
1≤i<j≤m

(yj − yi)

×
[
1 + O

(
(log t)3√

t

)]
.

Combining (73), (102) and (109) we obtain

Pt

(
X0

)
=

1

[p(1 − p)t]m(m−1)/4

Im,1/2

(2π)
m
2 m!

×
m∏

i=1

∮
C|ξi|=r>1

dξi

2πiξi

(
1 − κξi

1 − κ

)i−1 ∏
1≤i<j≤m

(ξj − ξi)

×
m∏

i=1

(ξi − 1)−m ξ
x0

m−x0
i +1

i

[
1 + O

(
(log t)3√

t

)]
, (110)

where Im,1/2 is the Mehta integral defined in (98). Writing the above product
of integrals in determinant form and using the definition of Im,1/2 we arrive at
the final result

Pt

(
X0

) � 2m

πm/2
[p(1 − p)t]−

m(m−1)
4 (1 − κ)−

m(m−1)
2

×
m∏

l=1

Γ (l/2 + 1) det
[(

gi,j(x0
m − x0

i )
)m

i,j=1

]
. (111)

Here the function gi,j(x) is defined as follows

gi,j(x) =
∮

C0

dξ

2πi
(κ + κξ − 1)i−1 (1 + ξ)x

ξj
. (112)

The case κ > 1 Let κ be a real number, κ > 1. We return to the formulas
(102,103). The crucial distinction from the case |κ| < 1 is that the presence of
exponentially growing terms κni affects the range of values of v1, . . . , vm, which
make the major contribution to the final sum of (102). Indeed, we can write

κni = etvi log κκ−xi+x0
m . (113)

Therefore, if we keep vi fixed, the sum over xi is rapidly converging. At the same
time the maximum of the vi-dependent exponential part of the r.h.s. of (102)
is shifted due to the appearance of the additional term tvi log κ. In a sense, the
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roles of the variables x2, . . . , xm and n2, . . . , nm are interchanged compared to
the case κ < 1.

Consequently, instead of summing over n2, . . . , nm and then over x1, . . . , xm

we go to the variables v1, . . . , vm, (104), and x2, . . . , xm and evaluate the sum
over the latter first. ∑

x0
1<x1<x2<···<xm

∑
{n2,...,nm}∈Z

m−1
≥0

A ({ξi, vi}m
i=1 , {nk}m

i=2) (114)

=
∑

{v1,...,vm}∈t−1Z
m

≥x0
1

v2t+x0
m∑

x2=x1+1

· · ·
vmt+x0

m∑
xm=xm−1+1

A
(
{ξi, vi}m

i=1 ,
{
vi −

(
xi − x0

m

)
/t
}m

i=2

)
Collecting the factors of A ({ξi, vi}m

i=1 ,
{
vi −

(
xi − x0

m

)
/t
}m

i=2

)
dependent on

x2, . . . , xm we can evaluate the sum over these variables

v2t+x0
m∑

x2=x1+1

· · ·
vmt+x0

m∑
xm=xm−1+1

m∏
i=2

κ−xi+x0
m

(
tvi − xi + x0

m + i − 2
tvi − xi + x0

m

)

=
κ(m−1)(x0

m−x1)

(κ − 1) · · · (κm−1 − 1)

m∏
i=2

(tvi)
i−2

(i − 2)!

(
1 + O

(
1
t

))
. (115)

Here we extended the upper limit of all the summations to infinity, which yields
a correction of order of κ−vit, and we used Stirling’s formula to approximate
the binomial coefficient(

i + n
n

)
=

ni

i!

(
1 + O

(
1
n

))
. (116)

We also imply that the value of vi in the effective summation range is finite and
positive. Indeed, the range of summation over vi is defined as above by the re-
quirement that the exponential parts of A ({ξi, vi}m

i=1 ,
{
vi −

(
xi − x0

m

)
/t
}m

i=2

)
are not too small. Specifically, the exponentiated expressions are

exp
{

t

[
hi

(
(1 − vi) p

(1 − p) vi

)
+ vi log κ

]}
(117)

for i = 2, . . . , m, and

exp
{

t

[
h1

(
(1 − vi) p

(1 − p) vi

)
− (m − 1) v1 log κ

]}
, (118)

the term t (1 − m) v1 log κ = log
(
κ(m−1)(x0

m−x1)
)

in the latter coming from the
result of the summation over x2, . . . , xm, (115). For a real positive κ the major
contribution to the sums over v1, . . . , vm comes from the neighborhood of the
maxima of the exponentiated expressions

|vi − ui| < t−1/2 log t (119)
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where the maxima ui are located at

u1 = u(κ1−m) (120)

and
ui = u(κ) (121)

for i = 2, . . . , m where
u(x) =

px

1 + (x − 1) p
. (122)

Then we can follow the above procedure to evaluate the sums over v1, . . . , vm.
Going from the sum to an integral over the variables

yi =
√

t
vi − ui√
ui (1 − ui)

. (123)

we arrive at the integral expression

∑
{v1,...,vm}∈t−1Z

m

≥x0
1

v2t+x0
m∑

x2=x1+1

· · ·
vmt+x0

m∑
xm=xm−1+1

A
(
{ξi, vi}m

i=1 ,
{
vi −

(
xi − x0

m

)
/t
}m

i=2

)
= (1 − p + κp)(m−1)t (1 − p + κ1−mp

)t

× (u − u1)
m−1 (1 − u)

(m−1)(m−2)
2

um(m−1)/2um−1
1

(
p

1 − p

)m(m−1)
2

×

m∏
k=1

(
ξk − (1−u)p

(1−p)u

)1−m (
ξk − (1−u1)p

(1−p)u1

)−1

(2π)m/2
m∏

i=2

[(i − 2)! (κi−1 − 1)]

×
+∞∫

−∞
dy1e

−y2
1/2 · · ·

+∞∫
−∞

dyme−y2
m/2

m∏
2≤l<j≤m

(yj − yl)

×
m∏

s=2

(
ys +

u
√

t√
u(1 − u)

)s−2 (
1 + O

(
1
t

))
. (124)

Note that we keep the leading terms of the Taylor expansion in (vi − ui), i =
1, . . . , m, everywhere under the integral except the product in the last line, where
we keep the terms of two subsequent orders. The reason for the latter is that the
leading terms of the multipliers cancel due to the antisymmetry of the rest of
the expression in v2, . . . , vm. Therefore, what contributes is the antisymmetric
part of this line, that is

∏m
2≤l<j≤m (yl − yj) / (m − 1)!, which contains only the

terms of the same order. Inserting it, we again arrive at the Mehta integral
Im−1,1 over (m − 1), variables y2, . . . , ym, while the integral over y1 decouple
being just the Laplace integral. After substitution of the explicit form of u and
u1 the r.h.s. of (124) becomes

(1 − p + κp)(m−1)t (1 − p + κ1−mp
)t (κm − 1)m−1

κ−m(m−1)
2

m∏
i=2

[(i − 1)! (κi−1 − 1)]
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×Im−1,1 (2π)−
m−1

2

m∏
k=1

(
ξk − 1

κ

)1−m (
ξk − κm−1

)−1
. (125)

This formula together with (73), (102) and (98) yields

Pt

(
X0

)
= (1 − p + κp)(m−1)t (1 − p + κ1−mp

)t

× (κm − 1)m−1 (−1)
m(m−1)

2

m−1∏
i=1

(κi − 1)

m∏
k=1

∮
Cr>κm−1

dξk

2πi
(126)

× ξ
x0

m−x0
k

k

(ξk − κ−1)m−k (ξk − κm−1)

∏
1≤i<j≤m

(ξj − ξi).

The integration over ξk, k = 1, . . . , m is performed over a circle encircling the
singularities of the expression under the integral, i.e. |ξk| > κm−1. First we
integrate over ξm, then over ξm−1, ξm−2, · · · , ξ1. It turns out that, if we integrate
in this order, the expression under the integral being evaluated will contain only
one simple pole at each step. As a result we arrive at the simple one term
expression

m∏
k=1

∮
Cr>κm−1

dξk

2πi
ξ

x0
m−x0

k

k

(ξk − κ−1)m−k (ξk − κm−1)

∏
1≤i<j≤m

(ξj − ξi)(127)

= (−1)
m(m−1)

2 κ
∑m−1

k=1 (x0
k−x0

m)

This formula together with (126) results in (19).

Remark 2 An extension of the approximation technique used to complex val-
ues of κ is problematic for |κ| > 1. The reason is that in this case the critical
points u1, . . . , um are away from the real axis. It follows then that their contri-
bution can be exponentially smaller the other corrections appearing.

4.2.2 The limiting case κ → 1

Now we consider the limiting case

t → ∞, κ → 1, (1 − κ)
√

t = const. (128)

We start with the formula (68) and expand the term (1−κzi)−i+1 into its Taylor
series,

Pt

(
X, X0

)
=

∑
{ni}∈Z

m
≥0

m∏
i=2

κni

(
i + ni − 2

ni

)
(129)

× det

(∮
dzi

2πizi

(
1 − p +

p

zi

)t

z
xi+ni−x0

j

i (1 − κzi)j−1

)
1≤i,j≤m

.

The integral in the determinant can be evaluated in the saddle point approx-
imation, the analysis being similar to the one above, (80)-(86), with the same
function hi(z), (80) except that vi now depends on ni:

vi =
xi + ni − x0

m

t
. (130)
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What is special about the limit κ → 1 is that the saddle point can coincide with
a zero of the factor (1 − κz)j within the effective range of the summation over
vi. Therefore, instead of expanding this term into a Taylor series, we leave it
in the integral as is, while the rest can be expanded around the saddle point
as usual. Then we use the following formula for Hermite polynomials (see [17],
formula 3.462.4),

∞∫
−∞

e−x2
(x − β)n

dx =
√

π

(
i
2

)n

Hn (iβ) . (131)

As a result we obtain∮
dz

2πiz
ethi(z)zx0

m−x0
j (1 − κz)j−1 = ethi(z

∗) (z∗)x0
m−x0

j−1 (132)

×
∫ ∞

−∞

dξ

2π
e−

1
2 t|h′′

i (z∗)|ξ2
(1 − κ (z∗ + iξ))j−1

=
e

thi

(
(1−vi)p

(1−p)vi

)
√

π (2t)j/2
Hj−1

(√
tvi (1 − vi)

2

(
1
κ

(1 − p) vi

(1 − vi) p
− 1

))

×κj−1

(
p

1 − p

)j+x0
m−x0

j(1 − vi)
x0

m−x0
j−j/2

v
x0

m−x0
j−3j/2

i

(
1 + O

(
1
t

))
.

Next, we argue that the dominant range of the summation over X and {ni}m
i=1

is the domain
pt −√

t log t ≤ xi + ni ≤ pt +
√

t log t, (133)

where xi varies within the range

x0
1 ≤ x1 ≤ · · · ≤ xm ≤ t, (134)

and
0 ≤ ni < ∞. (135)

To this end, consider the integral (132) for some particular i and j. After
expanding (1− κzi)j into a binomial sum, it becomes a finite sum of terms like

(1 − p)t−(ni+xi−x0
j+k) pni+xi−x0

j+k

(
t

ni + xi − x0
j + k

)
, (136)

where k is a finite integer, 0 ≤ k ≤ j. Beyond the range (133) this can be

estimated using Stirling’s formula to be O(t−1/2e−
(log t)2

2p(1−p) ). The summation
over xi, which includes at most t nonzero terms, multiplies this estimate by a
factor of t. Finally the summation over ni yields an additional factor (1 − κ)−i,
with the result that the order of the contribution from outside the domain (133)
is

O

(
(1 − κ)−i

t1/2e−
(log t)2

2p(1−p)

)
. (137)

Below, the leading term of the sum of interest will be shown to decay at most
as a power of t. Therefore, when κ is such that (1 − κ) = O(t−s) with any fixed
s > 0, the term (137) is asymptotically negligible.
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One can approximate (132) using the Taylor formula, which yields

det

[
Hj−1

(√
tp (1 − p)

2

(
vi − p

p (1 − p)
− 1 +

1
κ

))]m

i,j=1

×

m∏
i=1

e−t
(vi−p)2

2p(1−p)

π
m
2 [2tp (p − 1)]

m(m+1)
4

(
1 + O

(
(log t)3√

t

))
. (138)

The determinant can be simplified by adding to every line a multiple of the lines
below it, such that all the terms of the Hermite polynomials except the highest
cancel:

det [Hj−1 (ai)]
m
i,j=1 = (−2)

m(m−1)
2 ∆(a1, . . . , am) (139)

Thus, the survival probability takes the following form

Pt

(
X0

)
=

∑
{xi}m

i=1

∑
{ni}m

i=2

(−1)
m(m−1)

2

(2π)
m
2 t

m(m+1)
2 [p (p − 1)]

m2
2

×
m∏

i=2

κnie−
(xi+ni−x0

m−pt)2

2p(1−p)t

(
i + ni − 2

ni

)
(140)

× ∆(x1, x2 + n2, . . . , xm + nm)

[
1 + O

(
(log t)3√

t

)]
,

where the summation is over the domains of {xi}m
i=1 and {ni}m

i=2 defined by the
inequalities (133)-(135). Due to the presence of the Gaussian factor exp(−t(vi−
p)2/(2p(1 − p)t)) the sum over ni converges uniformly in xi. Therefore we can
interchange the order of summations over xi and over ni. This allows us to
apply Lemma 1 first to the variables xi and then also to the variables ni. As
the characteristic scale of ni is of order

√
t we can use the approximation (116)

for the binomial coefficient, where the correction term yields an error of the
order O

(
t−1/2

)
in the final result. To write down the final limiting formula as

t → ∞ for P (
X0

)
we introduce the rescaled variables

ui =
(xi − pt)√
tp (1 − p)

, (141)

νi =
ni√

tp (1 − p)
. (142)

and the transition parameter α, (23), which is constant in the limit under con-
sideration. The formula (140) then takes the form (24) , where fm (α) is given
by (25).

5 Asymptotic behaviour of fm (α)

In this section we evaluate the limiting behaviour of fm(α) for α → ∞ and
α → −∞ and its value at α = 0 . In the latter case it is just the probability
normalization of the TASEP, so fm (0) must be equal 1. The limit α → −∞
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has no probabilistic meaning, but it can be considered a particular limit of the
generating function of the rescaled particle current in the TASEP: see Section
2. Let us introduce the notation

Jm (α) =

∞∫
−∞

du1

∞∫
u1

du2 · · ·
∞∫

um−1

dum

∞∫
0

dν2 · · ·
∞∫
0

dνm (143)

× e−
1
2 u2

1

m∏
i=2

νi−2
i e−

1
2 (ui+νi)

2−ανi∆ (u1, ν2 + u2, . . . , νm + um) .

for the multiple integral entering into the expression of fm (α). Then we have

fm (α) =
(−1)

m(m−1)
2

(2π)
m
2 2! · · · (m − 2)!

Jm (α) . (144)

The form of Jm (α) is reminiscent of the multiple integrals which appear in the
theory of Gaussian random matrix ensembles. The following three lemmas show
that in the three limiting cases Jm (α) can be explicitly evaluated in the form
of Mehta integrals.

Lemma 2

lim
α→∞α

m(m−1)
2 Jm (α) = Im,1/2

(−1)
m(m−1)

2 2! · · · (m − 2)
m!

(145)

where Im,1/2 is the Mehta integral defined in (98).

Proof Let us make a variable change under the integral (25) introducing new
integration variables

ϕ1 = u1, (146)
ϕi = νi + ui, i = 2, . . . , m, (147)

µi−1 = ανi, i = 2, . . . , m. (148)

In the new variables the integral (25) can be written as

Jm (α) =
1

αm(m−1)/2

m−1∏
i=1

∞∫
0

dµiµ
i−1
i e−µig(µ1, . . . , µm−1; α), (149)

where we introduce the notation

g(µ1, . . . , µm−1; α)

=

∞∫
−∞

dϕ1

∞∫
ϕ1+

µ1
α

dϕ2

∞∫
ϕ2+

µ2−µ1
α

dϕ3 (150)

· · ·
∞∫

ϕm−1+
µm−1−µm−2

α

dϕme−
1
2 (ϕ2

m+···+ϕ2
1)∆ (ϕ1, . . . , ϕm) . (151)
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The function g(µ1, . . . , µm−1; α) is bounded uniformly in α ∈ R.

|g(µ1, . . . , µm−1; α)| ≤ Im,1/2, (152)

which can be shown by replacing the Vandermonde determinant under the in-
tegral by its absolute value and extending the lower integration limits to minus
infinity. Therefore the function under the integral in (149) is uniformly bounded
and integrable. By the dominating convergence theorem one can interchange
the limit α → ∞ and integration. Then, for the function g(µ2, . . . , µm; α) we
have

lim
α→∞ g(µ2, . . . , µm; α) = Im,1/2

(−1)
m(m−1)

2

m!
. (153)

Remarkably the limiting value does not depend on the variables
{µ1, . . . , µm−1}. Therefore the integration in (149) can be performed indepen-
dently for each i = 2, . . . , m, each resulting in (i − 1)!. This yields (145).

Lemma 3

Jm (0) =
(−1)

m(m−1)
2

(m − 1)!m!
Im,1 (154)

Proof Let us make the variable change

χ1 = u1

χi = νi + ui, i = 2, . . . , m. (155)

Then the integral takes the form

Jm (0) =

∞∫
−∞

dχ1

∞∫
χ1

du2

∞∫
u2

du3 · · ·
∞∫

um−1

dum

∞∫
u2

dχ2 (156)

· · ·
∞∫

um

dχme−
1
2 χ2

1

m∏
i=2

(χi − ui)
i−2 e−

1
2 χ2

i ∆ (χ1, . . . , χm) .

The integrals over ui, for i = 1, . . . , m, can be evaluated step by step. First, for
i = m, we have

∞∫
um−1

dum

∞∫
um

dχme−
1
2 χ2

m (χm − um)m−2 ∆ (χ1, . . . , χm) (157)

=
1

m − 1

∞∫
um−1

dχme−
1
2 χ2

m (χm − um−1)
m−1 ∆ (χ1, . . . , χm) ,

which is done by changing the integration order. In the next step, the integral
over um−1 can be calculated by parts:

∞∫
um−2

dum−1

∞∫
um−1

dχm−1

∞∫
um−1

dχme−
1
2 χ2

m−1− 1
2 χ2

m
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× (χm−1 − um−1)
m−3 (χm − um−1)

m−1 ∆ (χ1, . . . , χm)

=
1

m − 2
[

∞∫
um−2

dχm−1

∞∫
um−2

dχme−
1
2 χ2

m−1− 1
2 χ2

m (158)

× (χm−1 − um−2)
m−2 (χm − um−2)

m−1 ∆ (χ2, . . . , χm)

− (m − 1)

∞∫
um−2

dum−1

∞∫
um−1

dχm−1

∞∫
um−1

dχme−
1
2 χ2

m−1− 1
2 χ2

m

× (χm−1 − um−1)
m−2 (χm − um−1)

m−2 ∆ (χ1, . . . , χm)].

The second term cancels because of the antisymmetry of the Vandermonde de-
terminant with respect to interchange of χm and χm−1. Iterating this procedure
we remove (m − 1) integrals in the variables u2, . . . , um .

1
(m − 1)!

∞∫
−∞

dχ1

∞∫
χ1

dχ2 · · ·
∞∫

χ1

dχm (159)

×e−χ2
1

m∏
i=2

(χi − χ1)
i−1

e−
1
2 χ2

i ∆ (χ1, . . . , χm)

A symmetrization of the expression under the integral in the variables χi, i =
2, . . . , m, yields another Vandermonde determinant. Thus

Jm (0) =
(−1)

m(m−1)
2

((m − 1)!)2

∞∫
−∞

dχ1

∞∫
χ1

dχ2 (160)

· · ·
∞∫

χ1

dχme−
1
2 (χ2

1+···+χ2
m) |∆ (χ1, . . . , χm)|2 .

Finally we add this integral to the (m − 1) similar ones, obtained by interchang-
ing χ1 with each of χ2, . . . , χm, and divide the sum by m.

Jm (0) =
(−1)

m(m−1)
2

(m − 1)!m!

∞∫
−∞

dχ1 (161)

· · ·
∞∫

−∞
dχme−

1
2 (χ2

1+···+χ2
m) |∆ (χ1, . . . , χm)|2

This gives us the stated result.

Lemma 4

lim
α→−∞ e−α2m(m−1)/2Jm (α) = Im−1,1

√
2π (−1)

m(m−1)
2

((m − 1)!)2
mm−1. (162)
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Proof We start from the integral in (25) and make a change of variables as
follows,

xi = νi + α + u1, i = 1, . . . , m − 1 (163)
si = |α| (ui − u1) , i = 1, . . . , m − 1 (164)
s1 = u1 − α (m − 1) , (165)

which yields the following integral expression,

Jm (α) =
eα2 m(m−1)

2

|α|m−1

∞∫
−∞

ds1e
− 1

2 s2
1

∞∫
0

ds2e
−s2

∞∫
s2

ds3e
−s3 · · · (166)

×
∞∫

sm−1

dsme−sm

∞∫
s1+αm

dx2 · · ·
∞∫

s1+αm

dxm

m∏
i=2

(xi − s1 − αm)i−2

×
m∏

i=2

e
− 1

2

[
x2

i + 1
|α|

(
2sixi+

s2
i

|α|

)]
∆
(

s1 + αm, x2 +
s2

|α| . . . , xm +
sm

|α|
)

.

Due to the presence of the Gaussian and exponential terms, the main contri-
bution to the integral comes from finite values of s1, . . . , sm and x2, . . . , xm.
Therefore, up to corrections of order of O(1/ |α|), we can neglect the terms
divided by |α|, and extend the lower limits of integration over x2, . . . , xm to
−∞. The the integrals over s2, . . . , sm decouple, and we can evaluate them to
1/ (m − 1)!. The Vandermonde determinant becomes antisymmetric with re-
spect to permutations of the variables x2, . . . , xm. As the integration is over the
symmetric domain, we can leave only the antisymmetric part of the rest of the
expression. The product

∏m
i=2

(
xi − s1 − αm

2

)i−2 then results in

(−1)
(m−1)(m−2)

2
∆ (x2 . . . , xm)

(m − 1)!
. (167)

After collecting the leading order terms from the first argument of

∆ (s1 + αm, x2 . . . , xm) � (αm)m−1 ∆ (x2 . . . , xm) , (168)

the integral over s1 decouples as well, and yields
√

π. We finally obtain

Jm (α) � e
α2m(m−1)

2
√

2π (−1)
(m−1)(m−2)

2

|α|m−1 ((m − 1)!)2
(αm)m−1

×
∞∫

−∞
dx2 · · ·

∞∫
−∞

dxme
− 1

2

m∑
i=2

x2
i |∆ (x2, . . . , xm)|2 . (169)

Using the definition of the Mehta integral, (98) we obtain (162).

The above lemmas, the formula for the Mehta integral (98) and the definition
(144) of fm (α) establish the results (27)-(29).

32



6 Discussion of the results and conclusion

The first result obtained in this paper is an expression for the survival prob-
ability for m walkers in the SVW model. At the fixed parameter κ < 1 and
t → ∞ the leading asymptotics t−m(m−1)/4 coincides with that for the usual
VW [14]. This result is intuitively clear. In the case of the VW it is obtained by
considering the evolution of independent noninteracting particles and reducing
the number of its outcomes by dropping those realizations where the crossings
of particle time space trajectories occur. Then, the asymptotics of the survival
probability for two walkers t−1/2 follows directly from the diffusion law and the
method of images. For m walkers, the method of images involves m(m − 1)/2
reflecting wall planes. Each wall brings with it a factor t−1/2 providing to-
tal contribution t−m(m−1)/4. For any fixed κ < 1 the events of crossing occur
with a finite, though changed, probability, so that this argument still holds.
The survival probability changes by a constant factor dependent on κ, leaving
Fisher’s law unchanged. As κ approaches one this factor diverges, which in-
dicates a qualitative change of behaviour of the survival probability. As the
crossings become less probable, it finally saturates to the TASEP normaliza-
tion constant. The transition between the two regions takes place on the scale
(1 − κ)

√
t = const, where the effect of the diffusive spreading of particles be-

comes comparable to the one caused by SVW interaction. In this case, the
survival probability is expressed by the scaling function fm(α), which has the
SVW and TASEP asymptotics as limiting cases.

The formulas for the survival probability in SVW can be reinterpreted in
terms of the moment generating function of the time integrated particle current
Yt in TASEP, which, in turn, can be used to construct the distribution of the
same quantity. The cases of generic κ < 1 and κ > 1 correspond to the tails
of the probability distribution of Yt at the large deviation scale, characterizing
positive, (Yt − 〈Yt〉)/t > 0, and negative, (Yt − 〈Yt〉)/t < 0, deviations respec-
tively. The positive tail has the form specific for the current distribution for m
free independent Bernoulli particles, while the form of the negative tail looks
like that of the distribution for one Bernoulli particle that makes m steps at
a time or m particles jumping one step synchronously. Such asymmetry re-
veals different mechanisms of positive and negative fluctuations. For positive
deviations m particles have to be ”accelerated” independently. The main contri-
bution to the negative deviations comes from the events when the first particle
decelerates all particles following behind. Our results are to be compared to
the ones obtained by Derrida and Lebowitz [8] (see also [7]) for the large devi-
ation function of the TASEP current on a ring. In particular, they have shown
that for large m the non-universal tails of the current probability have the form
P (Yt/t = v) ∼ emH+(v/m)t and P (Yt/t = v) ∼ eH−(v/m)t for positive and neg-
ative deviations respectively. Our results have the same functional form even
for finite m with H−(v) = H+(v) being a simple large deviation function of
the Bernoulli process. Remarkably, such a mechanism survives on the infinite
lattice, despite the particles drifting apart from each other in the course of time,
so that they meet less and less often. The acceleration-deceleration asymmetry
was also observed in the large deviations of the distance travelled by individ-
ual particles in TASEP studied in [19] for a general case of particle dependent
hopping rates. There the negative large deviations do not depend on the order
number of a particle whereas the positive ones do.
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The result obtained for the SVW in the transition region (1− κ)
√

t = const
provides us with the limiting distribution of the particle current measured at
the diffusive scale, |Yt − 〈Yt〉| ∼

√
t. The distribution obtained is parameter

free, dependent only on the number of particles. We expect that it is a uni-
versal distribution for the systems of particles performing a driven diffusion,
independent of the details of microscopic dynamics. The distribution has a
skew, non-Gaussian form, with tails matching the large deviation behaviour
asymptotically.

Several directions for future work can be mentioned. First direct contin-
uation of the present paper is an asymptotic study of the function fm (α) as
m → ∞. Considering a certain common scaling with the variable α is expected
to give a new universal scaling function characterizing the KPZ class. Note
that in the limiting cases this function reduces to Mehta integrals, which are
the probability normalization constants for Gaussian random matrix ensembles,
namely the Unitary and Orthogonal ensembles. The asymptotic evaluation of
these integrals performed in the random matrix theory resulted in non-trivial
densities of critical points, from which comes the leading contribution to the
integrals [32]. It would be interesting to see how these densities transform from
one to another as the parameters vary between the limiting cases corresponding
to different ensembles. It would also be interesting to study the TASEP con-
fined in a ring. The starting point of this analysis could be the recently obtained
expressions for the Green functions [36]. In this way one could obtain a scaling
function that characterizes the behaviour of KPZ interfaces in finite systems.

Another possible development of the present article is a generalization of the
above mentioned results for the probability distributions of the distance trav-
elled by an individual particle in the TASEP and the corresponding correlation
functions to SVW case. Note that similar results exist also for the VW [1]. In
both cases the appropriately rescaled distribution of the distance travelled by
a single particle starting from a half filled lattice is shown to converge, to the
so-called Tracy-Widom distributions [43], which appear in the random matrix
theory as a distribution of maximal eigenvalue in the Gaussian ensembles, uni-
tary in case of TASEP and orthogonal for VW. The SVW model establishes
a bridge between these two cases. However, its Green function has neither a
Töplitz form like in VW nor a special structure like in TASEP, which allowed
Sasamoto, [39], to reinterpret it again as a problem of the VW and finally to
represent its evolution as a determinantal point process. Therefore, a significant
extension of the existing techniques is in order. In this connection we should
mention the recent advance for the Partially Asymmetric Simple Exclusion Pro-
cess [44]-[46], which was made only on the basis of the Bethe Ansatz solution
without use any free fermionic representation like VW.

An interesting example of SVW has been proposed recently by Johansson
[22] in his analysis of a domino tilling problem on the Aztec diamond known
as the arctic circle problem. It was shown that the domino configurations are
in one-to-one correspondence with trajectories of an n-particle process which
is defined as follows. At each discrete time step a particle jumps forward with
probability q or stays put with probability p = 1−q. If the next site is occupied,
the probability to stay put is 1 − q(1 − κ) as in the SVW model. In addition,
after each step, a particle i can be translated back to the distance si with
probability qsi provided that si < Xi − Xi−1 for all i. If one chooses κ = −q,
the model belongs to the free fermion class and its transition probabilities admit
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a determinant representation. It has been shown in [22] that the position of the
first particle is described by the Airy process in the thermodynamic limit for the
domain wall boundary conditions in the domino tiling problem. By similarity of
the models, one may expect that the extremal statistics of the SVW model also
exhibits a kind of Tracy-Widom distribution for appropriate initial conditions.
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