52 research outputs found

    Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    Get PDF
    In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm). The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl). The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal

    Lewatit S100 in Drinking Water Treatment for Ammonia Removal

    Get PDF
    Ammonium nitrogen is the most important form of nitrogen that can cause excessive algal growth and stimulate eutrophication in surface water. The purpose of this study is to investigate the possibility of removing ammonium from drinking water by means of an ion Exchange process. Polymeric Lewatit S100 material (particle-size 0.3–1.2 mm) was used. The breakthrough capacity was determined by dynamic laboratory investigations and the concentration of regenerant solution (5 and 10 % NaCl) was investigated. The concentration of ammonium ion inputs in the tap water that we used were 10, 5 and 2 mg NH4+ l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that the breakthrough capacity was very small at ammonium concentration 2 mg NH4 + l_1 compared to its breakthrough capacity at ammonium concentration 10 mg NH4 + l_1. There was no difference between regeneration by 10 and 5 % NaCl. We conclude that the use of Lewatit S100 is an attractive and promising method for ammonium concentration greater than 5 mg NH4 + l_1 and till 10 mg NH4 + l_1

    Reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43771/1/10927_2005_Article_s004.pd

    Use of Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry to Demonstrate Decreased Serum Statin Levels after Extracorporeal LDL-Cholesterol Elimination

    Get PDF
    Background. Using our statin analysis method, it was possible to uncover a significant drop in statin levels (atorvastatin, simvastatin, and metabolites) after extracorporeal LDL-cholesterol elimination (EE) in severe familial hypercholesterolemia (FH). The purpose of this work was to identify the mechanism underlying this drop and its clinical significance as well as to propose measures to optimize a pharmacotherapeutical regimen that can prevent the loss of statins. Methods. Ultra High Performance Liquid Chromatography (UHPLC) connected to the triple quadrupole MS/MS system was used. Patients. A group of long-term treated patients (3–12 years of treatment) with severe FH (12 patients) and treated regularly by LDL-apheresis (immunoadsorption) or haemorheopheresis (cascade filtration) were included in this study. Results. After EE, the level of statins and their metabolites decreased (atorvastatin before/after LDL-apheresis: 8.83/3.46 nmol/l; before/after haemorheopheresis: 37.02/18.94 nmol/l). A specific loss was found (concentration of atorvastatin for LDL-apheresis/haemorheopheresis: 0.28/3.04 nmol/l in washing fluids; 11.07 nmol/l in filters). To prevent substantial loss of statin concentrations, a pharmacotherapeutic regimen with a longer time interval between the dose of statins and EE is recommended (15 hours). Conclusions. A specific loss of statins was found in adsorbent columns and filters. The decrease can be prevented by the suggested dosage scheme

    Ultra-Rare Genetic Variation in the Epilepsies : A Whole-Exome Sequencing Study of 17,606 Individuals

    Get PDF
    Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABA(A) receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNAIG, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.Peer reviewe

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Clinoptilolite in Drinking Water Treatment for Ammonia Removal

    No full text
    In most countries today the removal of ammonium ions from drinking water has become almost a necessity. The natural zeolite clinoptiloliteis mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation, and this has prompted its use in water treatment, wastewater treatment, swimming pools and fish farming. The work described in this paper provides dynamic data on cation exchange processes in clinoptilolite involving the NH4 +, Ca+2 and Mg+2 cations. We used material of natural origin – clinoptilolite from Nižný Hrabovec in Slovakia (particle-size 3–5 mm). The breakthrough capacity was determined by dynamic laboratory investigations, and we investigated the influence of thermal pretreatment of clinoptilolite and the concentration of regenerant solution (2, 5, and 10% NaCl). The concentrations of ammonium ion inputs in the tap water that we used were 10, 5, and 2 mg NH4 + l_1 and down to levels below 0.5 mg NH4 + l_1. The experimental results show that repeated pretreatment sufficiently improves the zeolite’s properties, and the structure of clinoptilolite remains unchanged during the loading and regeneration cycles. Ammonium removal capacities were increased by approximately 40 % and 20 % for heat-treated zeolite samples. There was no difference between the regenerates for 10% and 5% NaCl. We conclude that the use of zeolite is an attractive and promising method for ammonium removal.</p
    • …
    corecore