1,294 research outputs found
Effective Electrostatic Interactions in Suspensions of Polyelectrolyte Brush-Coated Colloids
Effective electrostatic interactions between colloidal particles, coated with
polyelectrolyte brushes and suspended in an electrolyte solvent, are described
via linear response theory. The inner cores of the macroions are modeled as
hard spheres, the outer brushes as spherical shells of continuously distributed
charge, the microions (counterions and salt ions) as point charges, and the
solvent as a dielectric continuum. The multi-component mixture of macroions and
microions is formally mapped onto an equivalent one-component suspension by
integrating out from the partition function the microion degrees of freedom.
Applying second-order perturbation theory and a random phase approximation,
analytical expressions are derived for the effective pair interaction and a
one-body volume energy, which is a natural by-product of the one-component
reduction. The combination of an inner core and an outer shell, respectively
impenetrable and penetrable to microions, allows the interactions between
macroions to be tuned by varying the core diameter and brush thickness. In the
limiting cases of vanishing core diameter and vanishing shell thickness, the
interactions reduce to those derived previously for star polyelectrolytes and
charged colloids, respectively.Comment: 20 pages, 5 figures, Phys. Rev. E (in press
Universal Elasticity and Fluctuations of Nematic Gels
We study elasticity of spontaneously orientationally-ordered amorphous
solids, characterized by a vanishing transverse shear modulus, as realized for
example by nematic elastomers and gels. We show that local heterogeneities and
elastic nonlinearities conspire to lead to anomalous nonlocal universal
elasticity controlled by a nontrivial infared fixed point. Namely, at long
scales, such solids are characterized by universal shear and bending moduli
that, respectively, vanish and diverge at long scales, are universally
incompressible and exhibit a universal negative Poisson ratio and a non-Hookean
elasticity down to arbitrarily low strains. Based on expansion about five
dimensions, we argue that the nematic order is stable to thermal fluctuation
and local hetergeneities down to d_lc < 3.Comment: 4 RevTeX pgs, submitted to PR
Attraction between like-charged colloidal particles induced by a surface a density - functional analysis
We show that the first non-linear correction to the linearised
Poisson-Boltzman n (or DLVO) theory of effective pair interactions between
charge-stabilised, co lloidal particles near a charged wall leads to an
attractive component of entro pic origin. The position and depth of the
potential compare favourably with rec ent experimental measurementsComment: 12 pages including 2 figures. submitted to physical review letter
Order parameters in the Verwey phase transition
The Verwey phase transition in magnetite is analyzed on the basis of the
Landau theory. The free energy functional is expanded in a series of components
belonging to the primary and secondary order parameters. A low-temperature
phase with the monoclinic P2/c symmetry is a result of condensation of two
order parameters X_3 and \Delta_5 . The temperature dependence of the shear
elastic constant C_44 is derived and the mechanism of its softening is
discussed.Comment: 4 pages, 1 figur
Modulation and correlations lengths in systems with competing interactions
We examine correlation functions in the presence of competing long and short
ranged interactions to find multiple correlation and modulation lengths. We
calculate the ground state stripe width of an Ising ferromagnet, frustrated by
an arbitrary long range interaction. In large systems, we demonstrate that
for a short range system frustrated by a general competing long range
interaction, the crossover temperature veers towards the critical
temperature of the unfrustrated short range system (i.e., that in which the
frustrating long range interaction is removed). We also show that apart from
certain special crossover points, the total number of correlation and
modulation lengths remains conserved. We derive an expression for the change in
modulation length with temperature for a general system near the ground state
with a ferromagnetic interaction and an opposing long range interaction. We
illustrate that the correlation functions associated with the exact dipolar
interactions differ substantially from those in which a scalar product form
between the dipoles is assumed.Comment: 17 pages, 9 figure
Discrete charge patterns, Coulomb correlations and interactions in protein solutions
The effective Coulomb interaction between globular proteins is calculated as
a function of monovalent salt concentration , by explicit Molecular
Dynamics simulations of pairs of model proteins in the presence of microscopic
co and counterions. For discrete charge patterns of monovalent sites on the
surface, the resulting osmotic virial coefficient is found to be a
strikingly non-monotonic function of . The non-monotonicity follows from a
subtle Coulomb correlation effect which is completely missed by conventional
non-linear Poisson-Boltzmann theory and explains various experimental findings.Comment: 4 twocolumn pages with 4 figure
Uniaxial and biaxial soft deformations of nematic elastomers
We give a geometric interpretation of the soft elastic deformation modes of
nematic elastomers, with explicit examples, for both uniaxial and biaxial
nematic order. We show the importance of body rotations in this non-classical
elasticity and how the invariance under rotations of the reference and target
states gives soft elasticity (the Golubovic and Lubensky theorem). The role of
rotations makes the Polar Decomposition Theorem vital for decomposing general
deformations into body rotations and symmetric strains. The role of the square
roots of tensors is discussed in this context and that of finding explicit
forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe
Effect of many-body interactions on the solid-liquid phase-behavior of charge-stabilized colloidal suspensions
The solid-liquid phase-diagram of charge-stabilized colloidal suspensions is
calculated using a technique that combines a continuous Poisson-Boltzmann
description for the microscopic electrolyte ions with a molecular-dynamics
simulation for the macroionic colloidal spheres. While correlations between the
microions are neglected in this approach, many-body interactions between the
colloids are fully included. The solid-liquid transition is determined at a
high colloid volume fraction where many-body interactions are expected to be
strong. With a view to the Derjaguin-Landau-Verwey-Overbeek theory predicting
that colloids interact via Yukawa pair-potentials, we compare our results with
the phase diagram of a simple Yukawa liquid. Good agreement is found at high
salt conditions, while at low ionic strength considerable deviations are
observed. By calculating effective colloid-colloid pair-interactions it is
demonstrated that these differences are due to many-body interactions. We
suggest a density-dependent pair-potential in the form of a truncated Yukawa
potential, and show that it offers a considerably improved description of the
solid-liquid phase-behavior of concentrated colloidal suspensions
Charge ordering in the spinels AlVO and LiVO
We develop a microscopic theory for the charge ordering (CO) transitions in
the spinels AlVO and LiVO (under pressure). The high degeneracy
of CO states is lifted by a coupling to the rhombohedral lattice deformations
which favors transition to a CO state with inequivalent V(1) and V(2) sites
forming Kagom\'e and trigonal planes respectively. We construct an extended
Hubbard type model including a deformation potential which is treated in
unrestricted Hartree Fock approximation and describes correctly the observed
first-order CO transition. We also discuss the influence of associated orbital
order. Furthermore we suggest that due to different band fillings AlVO
should remain metallic while LiVO under pressure should become a
semiconductor when charge disproportionation sets in
Charge Order Superstructure with Integer Iron Valence in Fe2OBO3
Solution-grown single crystals of Fe2OBO3 were characterized by specific
heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific
heat at 340 K indicates the onset of charge order. Evidence for a doubling of
the unit cell at low temperature is presented. Combining structural refinement
of diffraction data and Mossbauer spectra, domains with diagonal charge order
are established. Bond-valence-sum analysis indicates integer valence states of
the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest
example of ionic charge order so far.Comment: 4 pages, 5 figures. Fig. 3 is available in higher resolution from the
authors. PRL in prin
- …