12,455 research outputs found

    On the cometary hydrogen coma and far UV emission

    Get PDF
    Cometary hydrogen observations are reviewed with emphasis on observations of comet Bennett. The results are theoretically interpreted and a brief summary of ultraviolet observations other than Lyman alpha is given

    Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    Get PDF
    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 hours following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator. We compare our results with published estimates of the expansion velocity of the dust cloud. Our approach and models reproduce well the velocity distribution of the ejected particles. We consider these successful comparisons of the velocities as an evidence for the appropriateness of the approach. This analysis provides a more thorough understanding of the properties of the Deep Impact dust cloud.Comment: Comments: 6 pages, 2 Postscript figures, To appear in the proceedings of "Deep Impact as a World Observatory Event - Synergies in Space, Time", ed. Hans Ulrich Kaeufl and Chris Sterken, Springer-Verla

    What drives the dust activity of comet 67P/Churyumov-Gerasimenko?

    Full text link
    We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates

    Constraining the Circumbinary Envelope of Z CMa via imaging polarimetry

    Get PDF
    Z CMa is a complex binary system, composed of a Herbig Be and an FU Ori star. The Herbig star is surrounded by a dust cocoon of variable geometry, and the whole system is surrounded by an infalling envelope. Previous spectropolarimetric observations have reported a preferred orientation of the polarization angle, perpendicular to the direction of a large, parsec-sized jet associated with the Herbig star. The variability in the amount of polarized light has been associated to changes in the geometry of the dust cocoon that surrounds the Herbig star. We aim to constrain the properties of Z CMa by means of imaging polarimetry at optical wavelengths. Using ExPo, a dual-beam imaging polarimeter which operates at optical wavelengths, we have obtained imaging (linear) polarimetric data of Z CMa. Our observations were secured during the return to quiescence after the 2008 outburst. We detect three polarized features over Z CMa. Two of these features are related to the two jets reported in this system: the large jet associated to the Herbig star, and the micro-jet associated to the FU Ori star. Our results suggest that the micro-jet extends to a distance ten times larger than reported in previous studies. The third feature suggests the presence of a hole in the dust cocoon that surrounds the Herbig star of this system. According to our simulations, this hole can produce a pencil beam of light that we see scattered off the low-density envelope surrounding the system.Comment: Accepted for publication in A\&

    Ptychographic reconstruction of attosecond pulses

    Full text link
    We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.Comment: 12 pages, 7 figures, the MATLAB code for the method described in this paper is freely available at http://figshare.com/articles/attosecond_Extended_Ptychographyc_Iterative_Engine_ePIE_/160187

    Hubble Space Telescope Ultraviolet Imaging and High-Resolution Spectroscopy of Water Photodissociation Products in Comet Hyakutake (C/1996 B2)

    Get PDF
    Comet Hyakutake (C/1996 B2) provided a target of opportunity for performing a systematic study of water photodissociation products in which we obtained data from three instruments on the Hubble Space Telescope (HST). The HST Goddard High Resolution Spectrograph (GHRS) was used to measure the line profile of hydrogen Lyα (H Lyα) at six locations around the coma of the comet, ranging from the nucleus to a displacement of 100,000 km, and covering different directions compared with the comet-sun line. GHRS yielded line profiles with a spectral resolution (FWHM ~4 km s^(-1)) that was a factor of 2-3 better than any previous H Lyα or Hα ground-based measurements. The Wide Field Planetary Camera 2 (WFPC2) and the Woods filter were used to obtain H Lyα images of the inner coma. The faint object spectrograph (FOS) was used to determine the OH production rate and monitor its variation throughout the HST observing sequence. The GHRS H Lyα line profiles show the behavior of a line profile that is optically thick in the core for positions near the nucleus (<5000 km) and gradually becoming more optically thin at larger displacements and lower column abundances. A composite H Lyα image constructed from four separate WFPC2 exposures is consistent with the relative fluxes seen in GHRS observations and clearly shows the dayside enhancement of a solar illuminated optically thick coma. These data were analyzed self-consistently to test our understanding of the detailed physics and chemistry of the expanding coma and our ability to obtain accurate water production rates from remote observations of gaseous hydrogen (H) and hydroxyl (OH), the major water dissociation products. Our hybrid kinetic/hydrodynamic model of the coma combined with a spherical radiative transfer calculation is able to account for (1) the velocity distribution of H atoms, (2) the spatial distribution of the H Lyα emission in the inner coma, and (3) the absolute intensities of H and OH emissions, giving a water production rate of (2.6 ± 0.4) × 10^(29) s^(-1) on 1996 April 4

    Robust single-parameter quantized charge pumping

    Full text link
    This paper investigates a scheme for quantized charge pumping based on single-parameter modulation. The device was realized in an AlGaAs-GaAs gated nanowire. We find a remarkable robustness of the quantized regime against variations in the driving signal, which increases with applied rf power. This feature together with its simple configuration makes this device a potential module for a scalable source of quantized current.Comment: Submitted to Appl. Phys. Let

    The color dependent morphology of the post-AGB star HD161796

    Get PDF
    Context. Many protoplanetary nebulae show strong asymmetries in their surrounding shell, pointing to asymmetries during the mass loss phase. Questions concerning the origin and the onset of deviations from spherical symmetry are important for our understanding of the evolution of these objects. Here we focus on the circumstellar shell of the post-AGB star HD 161796. Aims. We aim at detecting signatures of an aspherical outflow, as well as to derive the properties of it. Methods. We use the imaging polarimeter ExPo (the extreme polarimeter), a visitor instrument at the William Herschel Telescope, to accurately image the dust shell surrounding HD 161796 in various wavelength filters. Imaging polarimetry allows us to separate the faint, polarized, light from circumstellar material from the bright, unpolarized, light from the central star. Results. The shell around HD 161796 is highly aspherical. A clear signature of an equatorial density enhancement can be seen. This structure is optically thick at short wavelengths and changes its appearance to optically thin at longer wavelengths. In the classification of the two different appearances of planetary nebulae from HST images it changes from being classified as DUPLEX at short wavelengths to SOLE at longer wavelengths. This strengthens the interpretation that these two appearances are manifestations of the same physical structure. Furthermore, we find that the central star is hotter than often assumed and the relatively high observed reddening is due to circumstellar rather than interstellar extinction.Comment: Accepted for publication in A&
    corecore