780 research outputs found

    El desarrollo larvario de Sabellastarte spectabilis (Grube, 1878) (Polychaeta: Sabellidae) en Hawaii

    Get PDF
    The sabellid polychaete Sabellastarte spectabilis is common in bays and harbours throughout Hawaii. It has become one of the most harvested marine ornamental species in the State. Collection can be difficult and potentially damaging to the reef community. Understanding the reproduction and life history of this polychaete will benefit the marine ornamental trade by facilitating aquaculture of the species and coral reef conservation by decreasing destructive collecting practices. There is very little known about the biology of this species. Experiments were conducted at the Hawaii Institute of Marine Biology to induce and document spawning and larval development. Oocytes range between 150-200 µm in diameter and sperm have spherical heads. Cell division in fertilized eggs begins approximately twenty minutes after spawning. Developmental stages were documented using light and scanning electron microscopy. Swimming larvae are first seen 7-8 h after spawning. Larvae have a well-developed prototroch and a less conspicuous neurotroch and metatroch. Two chaetigers develop sequentially on days 4 and 5 and settlement occurs 6-7 days after spawning. Metamorphosis occurs gradually from days 6-8. This is the first reported induction of spawning and description of larval development from fertilized egg to settlement and metamorphosis for this species.El poliqueto sabélido Sabellastarte spectabilis es común en bahías y puertos de Hawaii. Este sabélido ha llegado a ser una de las especies ornamentales marinas más recolectadas en el estado, pero su recolección es difícil y en muchos casos ocasiona daño a la comunidad arrecifal. Pese a ello, el conocimiento sobre su biología es escaso. El estudio de la reproducción y ciclo de vida de estos sabélidos facilitará su cultivo y beneficiará al mercado de especies ornamentales, a la vez que la diminución de la recogida destructiva se espera pueda contribuir a la conservación de los arrecifes coralinos. En el Hawaii Institute of Marine Biology se realizaron algunos experimentos con la finalidad de inducir y documentar su reproducción y desarrollo larvario. Los huevos miden entre 150-200 μm de diámetro y los espermatozoos presentan cabezas redondas. La división celular de huevos fertilizados comienza aproximadamente 20 minutos después del desove. Los estadios larvarios se documentaron con microscopios de luz y microscopia electrónico de barrido. Las primeras larvas aparecen 7-8 horas después del desove. Las larvas tienen una prototroca muy bien desarrollada y una neurotroca y metatroca menos conspicua. Entre los días 4 y 5 se desarrollan dos setígeros y el reclutamiento ocurrió 6-7 días después del desove. La metamorfosis ocurre gradualmente entre los días 6-8. Este estudio describe por primera vez la inducción del desove y la descripción del desarrollo larvario desde la fertilización del huevo hasta el establecimiento y metamorfosis de la especie. &nbsp

    Synchronization of Circadian Per2 Rhythms and HSF1-BMAL1:CLOCK Interaction in Mouse Fibroblasts after Short-Term Heat Shock Pulse

    Get PDF
    Circadian rhythms are the general physiological processes of adaptation to daily environmental changes, such as the temperature cycle. A change in temperature is a resetting cue for mammalian circadian oscillators, which are possibly regulated by the heat shock (HS) pathway. The HS response (HSR) is a universal process that provides protection against stressful conditions, which promote protein-denaturation. Heat shock factor 1 (HSF1) is essential for HSR. In the study presented here, we investigated whether a short-term HS pulse can reset circadian rhythms. Circadian Per2 rhythm and HSF1-mediated gene expression were monitored by a real-time bioluminescence assay for mPer2 promoter-driven luciferase and HS element (HSE; HSF1-binding site)-driven luciferase activity, respectively. By an optimal duration HS pulse (43Β°C for approximately 30 minutes), circadian Per2 rhythm was observed in the whole mouse fibroblast culture, probably indicating the synchronization of the phases of each cell. This rhythm was preceded by an acute elevation in mPer2 and HSF1-mediated gene expression. Mutations in the two predicted HSE sites adjacent (one of them proximally) to the E-box in the mPer2 promoter dramatically abolished circadian mPer2 rhythm. Circadian Per2 gene/protein expression was not observed in HSF1-deficient cells. These findings demonstrate that HSF1 is essential to the synchronization of circadian rhythms by the HS pulse. Importantly, the interaction between HSF1 and BMAL1:CLOCK heterodimer, a central circadian transcription factor, was observed after the HS pulse. These findings reveal that even a short-term HS pulse can reset circadian rhythms and cause the HSF1-BMAL1:CLOCK interaction, suggesting the pivotal role of crosstalk between the mammalian circadian and HSR systems

    The index of symmetry of compact naturally reductive spaces

    Get PDF
    We introduce a geometric invariant that we call the index of symmetry, which measures how far is a Riemannian manifold from being a symmetric space. We compute, in a geometric way, the index of symmetry of compact naturally reductive spaces. In this case, the so-called leaf of symmetry turns out to be of the group type. We also study several examples where the leaf of symmetry is not of the group type. Interesting examples arise from the unit tangent bundle of the sphere of curvature 2, and two metrics in an Aloff-Wallach 7-manifold and the Wallach 24-manifold.submittedVersionFil: Olmos, Carlos Enrique. Universidad Nacional de CΓ³rdoba. Facultad de MatemΓ‘tica, AstronomΓ­a y FΓ­sica; Argentina.Fil: Reggiani, Silvio NicolΓ‘s. Universidad Nacional de CΓ³rdoba. Facultad de MatemΓ‘tica, AstronomΓ­a y FΓ­sica; Argentina.Fil: Tamuru, Hiroshi. Universidad de Hiroshima. Escuela de Ciencias. Departamento de MatemΓ‘tica; JapΓ³n.MatemΓ‘tica Pur

    Interleukin-1 regulates multiple atherogenic mechanisms in response to fat feeding

    Get PDF
    Background: Atherosclerosis is an inflammatory process that develops in individuals with known risk factors that include hypertension and hyperlipidaemia, influenced by diet. However, the interplay between diet, inflammatory mechanisms and vascular risk factors requires further research. We hypothesised that interleukin-1 (IL-1) signaling in the vessel wall would raise arterial blood pressure and promote atheroma. Methodology/Principal Findings: Apoe(-/-) and Apoe(-/-)/IL-1R1(-/-) mice were fed high fat diets for 8 weeks, and their blood pressure and atherosclerosis development measured. Apoe(-/-)/IL-R1(-/-) mice had a reduced blood pressure and significantly less atheroma than Apoe(-/-) mice. Selective loss of IL-1 signaling in the vessel wall by bone marrow transplantation also reduced plaque burden (p<0.05). This was associated with an IL-1 mediated loss of endothelium-dependent relaxation and an increase in vessel wall Nox 4. Inhibition of IL-1 restored endothelium-dependent vasodilatation and reduced levels of arterial oxidative stress. Conclusions/Significance: The IL-1 cytokine system links atherogenic environmental stimuli with arterial inflammation, oxidative stress, increased blood pressure and atherosclerosis. This is the first demonstration that inhibition of a single cytokine can block the rise in blood pressure in response to an environmental stimulus. IL-1 inhibition may have profound beneficial effects on atherogenesis in man

    Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates

    Get PDF
    The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1Β U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1Β U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4Β U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose

    DNA Methylation and Normal Chromosome Behavior in Neurospora Depend on Five Components of a Histone Methyltransferase Complex, DCDC

    Get PDF
    Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora
    • …
    corecore