143 research outputs found

    No Open Cluster in the Ruprecht 93 Region

    Full text link
    UBVI CCD photometry has been obtained for the Ruprecht 93 (Ru 93) region. We were unable to confirm the existence of an intermediate-age open cluster in Ru 93 from the spatial distribution of blue stars. On the other hand, we found two young star groups in the observed field: the nearer one (Ru 93 group) comprises the field young stars in the Sgr-Car arm at d ~ 2.1 kpc, while the farther one (WR 37 group) is the young stars around WR 37 at d ~ 4.8 kpc. We have derived an abnormal extinction law (Rv = 3.5) in the Ruprecht 93 region.Comment: 6 pages, 6 figures, JKAS 2010, in press (Aug issue

    Singlet fermionic dark matter

    Full text link
    We propose a renormalizable model of a fermionic dark matter by introducing a gauge singlet Dirac fermion and a real singlet scalar. The bridges between the singlet sector and the standard model sector are only the singlet scalar interaction terms with the standard model Higgs field. The singlet fermion couples to the standard model particles through the mixing between the standard model Higgs and singlet scalar and is naturally a weakly interacting massive particle (WIMP). The measured relic abundance can be explained by the singlet fermionic dark matter as the WIMP within this model. Collider implication of the singlet fermionic dark matter is also discussed. Predicted is the elastic scattering cross section of the singlet fermion into target nuclei for a direct detection of the dark matter. Search of the direct detection of the dark matter provides severe constraints on the parameters of our model.Comment: 12 pages, 7 figure

    Z(2)-Singlino Dark Matter in a Portal-Like Extension of the Minimal Supersymmetric Standard Model.

    Get PDF
    We propose a Z2-stabilized singlino () as a dark matter candidate in extended and R-parity violating versions of the supersymmetric standard model. interacts with visible matter via a heavy messenger field S, which results in a supersymmetric version of the Higgs portal interaction. The relic abundance of can account for cold dark matter if the messenger mass satisfies GeV. Our model can be implemented in many realistic supersymmetric models such as the next-to-minimal supersymmetric (SUSY) standard model and nearly minimal SUSY standard model

    Doubly Coexisting Dark Matter Candidates in an Extended Seesaw Model

    Full text link
    We examine how a scenario of coexisting two-particle dark mater can be realized in the extended seesaw model, which we have proposed previously to accommodate small neutrino masses and low scale leptogenesis with an introduction of singlet Majorana neutrino SS and singlet scalar ϕ\phi. We now impose the discrete symmetry Z2×Z2Z_2 \times Z_2^{\prime} and introduce new renormalizable interaction terms with a new heavy singlet scalar particle Φ\Phi so as for previously introduced SS and ϕ\phi to be doubly coexisting dark matter candidates. Depending on the mass spectrum of the two dark matter candidates, the annihilation process either SSϕϕSS\longrightarrow \phi \phi or ϕϕSS\phi\phi\longrightarrow SS is of particular interest because the annihilation cross sections for the processes can be so large that the relic abundance of decaying particle should get lowered, which in turn makes the constraints on its parameter space relaxed, compared with the case of one and only one dark matter candidate. We discuss the implications of the dark matter detection through the scattering off the nucleus of the detecting material on our scenarios for dark matter candidates. We also study the implications for the search of invisible Higgs decay at LHC, which may serve as a probe of our scenario for dark matter.Comment: modified to renormalizable model

    Magnetic spin reorientation in Tb3Fe5O12 under external magnetic field

    Full text link
    The research was carried out on HANARO reactor KAERI, and partially at IMP Neutron Material Science Complex within the state assignment of FASO of Russia (theme “Flux” No. 01201463334), supported in part by grant 15-8-2-2 of the Program of Fundamental Researches of UB RAS and by the State contract (No. 3.6121.2017) between UrFU and the Ministry of Education and Science of Russian Federation

    Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2

    Get PDF
    The controllability over strongly correlated electronic states promises unique electronic devices. A recent example is an optically induced ultrafast switching device based on the transition between the correlated Mott insulating state and a metallic state of a transition metal dichalcogenide 1T-TaS2. However, the electronic switching has been challenging and the nature of the transition has been veiled. Here we demonstrate the nanoscale electronic manipulation of the Mott state of 1T-TaS2. The voltage pulse from a scanning tunnelling microscope switches the insulating phase locally into a metallic phase with irregularly textured domain walls in the charge density wave order inherent to this Mott state. The metallic state is revealed as a correlated phase, which is induced by the moderate reduction of electron correlation due to the charge density wave decoherence.131321sciescopu

    Invisible Higgs and Scalar Dark Matter

    Full text link
    In this proceeding, we show that when we combined WMAP and the most recent results of XENON100, the invisible width of the Higgs to scalar dark matter is negligible(<10%), except in a small region with very light dark matter (< 10 GeV) not yet excluded by XENON100 or around 60 GeV where the ratio can reach 50% to 60%. The new results released by the Higgs searches of ATLAS and CMS set very strong limits on the elastic scattering cross section.Comment: 4 pages, 2 figures, proceeding TAUP2011 References adde

    WIMP dark matter, Higgs exchange and DAMA

    Full text link
    In the WIMP scenario, there is a one-to-one relation between the dark matter (DM) relic density and spin independent direct detection rate if both the annihilation of DM and its elastic scattering on nuclei go dominantly through Higgs exchange. In particular, for DM masses much smaller than the Higgs boson mass, the ratio of the relevant cross sections depends only on the DM mass. Assuming DM mass and direct detection rate within the ranges allowed by the recent DAMA collaboration results -taking account of the channelling effect on energy threshold and the null results of the other direct detection experiments- gives a definite range for the relic density. For scalar DM models, like the Higgs portal models or the inert doublet model, the relic density range turns out to be in agreement with WMAP. This scenario implies that the Higgs boson has a large branching ratio to pairs of DM particles, a prediction which might challenge its search at the LHC.Comment: 5 pages, 5 figures. Matches the published version. One figure modified. Conclusions unchange

    \sqrt{s}_min: a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders

    Full text link
    We propose a new global and fully inclusive variable \sqrt{s}_{min} for determining the mass scale of new particles in events with missing energy at hadron colliders. We define \sqrt{s}_{min} as the minimum center-of-mass parton level energy consistent with the measured values of the total calorimeter energy E and the total visible momentum \vec{P}. We prove that for an arbitrary event, \sqrt{s}_{min} is simply given by the formula \sqrt{s}_{min}=\sqrt{E^2-P_z^2}+\sqrt{\met^2+M_{inv}^2}, where M_{inv} is the total mass of all invisible particles produced in the event. We use t\bar{t} production and several supersymmetry examples to argue that the peak in the \sqrt{s}_{min} distribution is correlated with the mass threshold of the parent particles originally produced in the event. This conjecture allows a determination of the heavy superpartner mass scale (as a function of the LSP mass) in a completely general and model-independent way, and without the need for any exclusive event reconstruction. In our SUSY examples of several multijet plus missing energy signals, the accuracy of the mass measurement based on \sqrt{s}_{min} is typically at the percent level, and never worse than 10%. After including the effects of initial state radiation and multiple parton interactions, the precision gets worse, but for heavy SUSY mass spectra remains 10%.Comment: 33 pages, 36 figures, discussion on effect of ISR and MPI adde
    corecore