38 research outputs found

    Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions

    Full text link
    Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5_5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5_5, CeRhIn5_5, and YbAl3_3, each with different electron mass. In contrast with Au/CeCoIn5_5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas, USA, May 13-18, 200

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for R∼dR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for R≫dR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    Field-screening properties of proximity-coupled

    No full text
    In Nb/Ag layers, the induced superconductivity in Ag by Nb gives rise to diamagnetic screening currents in the Ag layer well below the transition temperature of the superconductor. By investigating the position dependence of the individual diamagnetic transitions of Nb and Ag with a gradiometer in a nearly parallel magnetic field, we find that the screening of the Ag layer is remarkably different compared to the Nb layer. While for the Nb layer a strong out-of-plane contribution is observed due to the large demagnetization factor, such a contribution is absent for the Ag layer. This can be explained by the partial overscreening of the magnetic field, i.e. a reduced diamagnetic response of the Ag layer, as suggested by the theory for the clean limit
    corecore