221 research outputs found

    A sample for biodiversity in Turkey: Common bean (Phaseolus vulgaris L.) landraces from Artvin

    Get PDF
    Artvin province located in north-east region of Turkey is small province but has rich plant diversity due to its different geographical and ecological formation. Significant part of this province has been flooded by the dams which have been built. The common bean is a very important crop for Artvin’s farmers. This study was carried out with the aim of determining and preserving the characteristics of domestic bean varieties grown in Artvin. Common bean seeds were collected from 279 locations in 74 villages in seven districts of the province. These seeds were allocated to 400 sample groups according to their shapes and colors. Eleven monocolored and 21 dicolored or polycolored seed groups were determined. Majority of the seed were subcompressus type seeds. The samples in the 1st group were ranked first in terms of size index. Considering the 100 seed weight, 64.68% of the population was found between 25 to 40 g; 30.69% of the population was higher than 40 g. By the advantage of having big variation of all characters, landraces of bean varieties grown in Artvin Province have a rich genetic source that can be used in breeding programs.Key words: Common bean, landraces, seed shape, seed color, Turkey

    Successful Treatment for Hepatic Encephalopathy Aggravated by Portal Vein Thrombosis with Balloon-Occluded Retrograde Transvenous Obliteration

    Get PDF
    This report presents the case of a 78-year-old female with hepatic encephalopathy due to an inferior mesenteric venous-inferior vena cava shunt. She developed hepatocellular carcinoma affected by hepatitis C virus-related cirrhosis and underwent posterior sectionectomy. Portal vein thrombosis developed and the portal trunk was narrowed after hepatectomy. Portal vein thrombosis resulted in high portal pressure and increased blood flow in an inferior mesenteric venous-inferior vena cava shunt, and hepatic encephalopathy with hyperammonemia was aggravated. The hepatic encephalopathy aggravated by portal vein thrombosis was successfully treated by balloon-occluded retrograde transvenous obliteration via a right transjugular venous approach without the development of other collateral vessels

    Strengthening of short splices in RC beams using Post-Tensioned Metal Straps

    Get PDF
    This paper investigates the effectiveness of a novel and cost-effective strengthening technique using Post-Tensioned Metal Straps (PTMS) at enhancing the bond behaviour of short lap spliced steel bars in reinforced concrete (RC) beams. Twelve RC beams with a short lap splice length of 10d b (d b = bar diameter) at the midspan zone were tested in flexure to examine the bond splitting failure. The effect of confinement (no confinement, internal steel stirrups or external PTMS), bar diameter and concrete cover were examined. The results show that, whilst unconfined control beams failed prematurely due to cover splitting, the use of PTMS confinement enhanced the bond strength of the spliced bars by up to 58 % and resulted in a less brittle behaviour. Based on the test results, a new analytical model is proposed to predict the additional bond strength provided by PTMS confinement. The model should prove useful in the strengthening design of substandard lap spliced RC elements

    Insulin Production and Signaling in Renal Tubules of Drosophila Is under Control of Tachykinin-Related Peptide and Regulates Stress Resistance

    Get PDF
    The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone

    Localized induction of gene expression in embryonic stem cell aggregates using holographic optical tweezers to create biochemical gradients

    Get PDF
    Three-dimensional (3D) cell models that mimic the structure and function of native tissues are enabling more detailed study of physiological and pathological mechanisms in vitro. We have previously demonstrated the ability to build and manipulate 3D multicellular microscopic structures using holographic optical tweezers (HOTs). Here, we show the construction of a precisely patterned 3D microenvironment and biochemical gradient model consisting of mouse embryoid bodies (mEBs) and polymer microparticles loaded with retinoic acid (RA), embedded in a hydrogel. We demonstrate discrete, zonal expression of the RA-inducible protein Stra8 within mEBs in response to release of RA from polymer microparticles, corresponding directly to the defined 3D positioning of the microparticles using HOTs. These results demonstrate the ability of this technology to create chemical microgradients at definable length scales and to elicit, with fidelity and precision, specific biological responses. This technique can be used in the study of in vitro microenvironments to enable new insights on 3D cell models, their cellular assembly, and the delivery of drug or biochemical molecules for engineering and interrogation of functional and morphogenic responses

    Human embryo polarization requires PLC signaling to mediate trophectoderm specification

    Get PDF
    Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8–16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos
    • …
    corecore