161 research outputs found
Diffusive foam wetting process in microgravity
We report the experimental study of aqueous foam wetting in microgravity. The
liquid fraction along the bubble edges is measured and is found to be a
relevant dynamical parameter during the capillary process. The penetration of
the liquid in the foam, the foam inflation, and the rigidity loss are shown all
to obey strict diffusion processes.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let
Resumming large higher-order corrections in non-linear QCD evolution
Linear and non-linear QCD evolutions at high energy suffer from severe issues
related to convergence, due to higher order corrections enhanced by large
double and single transverse logarithms. We resum double logarithms to all
orders by taking into account successive soft gluon emissions strongly ordered
in lifetime. We further resum single logarithms generated by the first
non-singular part of the splitting functions and by the one-loop running of the
coupling. The resulting collinearly improved BK equation admits stable
solutions, which are used to successfully fit the HERA data at small-x for
physically acceptable initial conditions and reasonable values of the fit
parameters.Comment: 4 pages, 4 figures, based on talk given at Hard Probes 2015, 29 June
- 3 July 2015, Montreal, Canad
Resummation of Large Logarithms in the Rapidity Evolution of Color Dipoles
Perturbative corrections beyond leading-log accuracy to BFKL and BK
equations, describing the rapidity evolution of QCD scattering amplitudes at
high energy, exhibit strong convergence problems due to radiative corrections
enhanced by large single and double transverse logs. We identify explicitly the
physical origin of double transverse logs and resum them directly in coordinate
space as appropriate for BK equation, in terms of an improved local-in-rapidity
evolution kernel. Numerical results show the crucial role of double-logarithmic
resummation for BK evolution, which is stabilized and slowed down by roughly a
factor of two.Comment: 6 pages, 4 figures; Proceedings of the XXIII International Workshop
on Deep-Inelastic Scattering (27 April-May 1 2015, Dallas (USA)
Log(1/x) Gluon Distribution and Structure Functions in the Loop-Loop Correlation Model
We consider the interaction of the partonic fluctuation of a scalar
``photon'' with an external color field to calculate the leading and
next-to-leading order gluon distribution of the proton following the work done
by Dosch-Hebecker-Metz-Pirner. We relate these gluon distributions to the short
and long distance behavior of the cross section of an adjoint dipole scattering
off a proton. The leading order result is a constant while the next-to-leading
order result shows a ln(1/x) enhancement at small x. To get numerical results
for the gluon distributions at the initial scale Q^2_0=1.8 GeV^2, we compute
the adjoint dipole-proton cross section in the loop-loop correlation model.
Quark distributions at the same initial scale are parametrized according to
Regge theory. We evolve quark and gluon distributions to higher Q^2 values
using the DGLAP equation and compute charm and proton structure functions in
the small-x region for different Q^2 values.Comment: 13 pages, 10 figures,revised version,references added, typos
corrected, to be published in Eur. Phys. Journal
On the use of a running coupling in the calculation of forward hadron production at next-to-leading order
We study a puzzle raised recently regarding the running coupling prescription used in the calculation of forward particle production in proton-nucleus collisions at next-to-leading order: using a coordinate space prescription which is consistent with the one used in the high energy evolution of the target leads to results which can be two orders of magnitude larger than the ones obtained with a momentum space prescription. We show that this is an artefact of the Fourier transform involved when passing between coordinate and momentum space and propose a new coordinate space prescription which avoids this problem.Peer reviewe
QCD at small x and nucleus-nucleus collisions
At large collision energy sqrt(s) and relatively low momentum transfer Q, one
expects a new regime of Quantum Chromo-Dynamics (QCD) known as "saturation".
This kinematical range is characterized by a very large occupation number for
gluons inside hadrons and nuclei; this is the region where higher twist
contributions are as large as the leading twist contributions incorporated in
collinear factorization. In this talk, I discuss the onset of and dynamics in
the saturation regime, some of its experimental signatures, and its
implications for the early stages of Heavy Ion Collisions.Comment: Plenary talk given at QM2006, Shanghai, November 2006. 8 pages, 8
figure
Model for SU(3) vacuum degeneracy using light-cone coordinates
Working in light-cone coordinates, we study the zero-modes and the vacuum in
a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of
the tranverse variables, we dimensionally reduce this model to 1+1 dimensions.
After introducing an appropriate su(3) basis and gauge conditions, we extract
an adjoint field from the model. Quantization of this adjoint field and field
equations lead to two constrained and two dynamical zero-modes. We link the
dynamical zero-modes to the vacuum by writing down a Schrodinger equation and
prove the non-degeneracy of the SU(3) vacuum provided that we neglect the
contribution of constrained zero-modes.Comment: 22 pages, 5 figure
Optimal jet radius in kinematic dijet reconstruction
Obtaining a good momentum reconstruction of a jet is a compromise between
taking it large enough to catch the perturbative final-state radiation and
small enough to avoid too much contamination from the underlying event and
initial-state radiation. In this paper, we compute analytically the optimal jet
radius for dijet reconstructions and study its scale dependence. We also
compare our results with previous Monte-Carlo studies.Comment: 30 pages, 11 figures; minor corrections; published in JHE
Use of a running coupling in the NLO calculation of forward hadron production
We address and solve a puzzle raised by a recent calculation [1] of the cross section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an unreasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by 1 to 2 orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artifact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to momentum space. When used in coordinate space, the running coupling can act as a fictitious potential which mimics hard scattering and thus introduces a spurious contribution to the cross section. We identify a new coordinate-space prescription, which avoids this problem, and leads to results consistent with those obtained with the momentum-space prescription.Peer reviewe
Extracting the Distribution Amplitudes of the rho meson from the Color Glass Condensate
We extract the leading twist-2 and subleading twist-3 Distribution Amplitudes
(DAs) of the rho meson using the HERA data on diffractive rho photoproduction.
We do so using several Colour Glass Condensate (CGC) inspired and a Regge
inspired dipole models. We find that our extracted twist-2 DA is not much model
dependent and is consistent with QCD Sum Rules and lattice predictions. The
extracted twist-3 DA is more model dependent but is still consistent with the
Sum Rules prediction.Comment: 21 pages, 10 figures, 3 tables. Section 6 revised, figures 8 and 9
and table 3 updated. Conclusions essentially unchange
- …