705 research outputs found

    Specific patterns of whole-brain structural covariance of the anterior and posterior hippocampus in young APOE epsilon 4 carriers

    Get PDF
    Apolipoprotein E (APOE) Δ4 has been associated with smaller hippocampal volumes in healthy aging, while findings in young adults are inconclusive. Previous studies have mostly used univariate methods, and without considering potential anterior/posterior differences. Here, we used a multivariate method, partial least squares, and assessed whole-brain structural covariance of the anterior (aHC) and posterior (pHC) hippocampus in young adults (n = 97) as a function of APOE Δ4 status and sex. Two significant patterns emerged: (1) specific structural covariance of the aHC with frontal regions, temporal and occipital areas in APOE Δ4 women, whereas the volume of both the aHC and pHC in all other groups co-varied with frontal, parietal and cerebellar areas; and (2) opposite structural covariance of the pHC in Δ4 carriers compared to the aHC in non-carriers, with the pHC of Δ4 carriers covarying with parietal and frontal areas, and the aHC of Δ4 non-carriers covarying with motor areas and the middle frontal gyrus. APOE Δ4 has in young adults been associated with better episodic and spatial memory, functions involving the aHC and pHC, respectively. We found no associations between structural covariance and performance, suggesting that other factors underlie the performance differences seen between carriers and non-carriers. Our findings indicate that APOE Δ4 carriers and non-carriers differ in hippocampal organization and that there are differences as a function of sex and hippocampal segment. They stress the need to consider the hippocampus as a heterogeneous structure, and highlight the benefits of multivariate methods in assessing group differences in the brain

    Voltage-gated sodium channels as targets for pyrethroid insecticides

    Get PDF
    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity

    Interrelationships Between the Kinetics of VLDL Subspecies and HDL Catabolism in Abdominal Obesity: A Multicenter Tracer Kinetic Study

    Get PDF
    Context: Low plasma high-density lipoprotein (HDL) cholesterol is a major abnormality in abdominal obesity. This relates due to accelerated HDL catabolism, but the underlying mechanism requires further elucidation. The relationships between HDL catabolism and other variables that may be modified in abdominal obesity, such as very low-density lipoprotein (VLDL) subspecies (VLDL1, VLDL2) kinetics, liver fat, or visceral adiposity, remain to be investigated. Objectives: Our aim was to study the associations between HDL apolipoprotein (apo)-A-I fractional catabolic rate (FCR) and the kinetics of VLDL subspecies and estimates of liver and visceral and sc fat. Design: We carried out a multicenter in vivo kinetic study using stable isotopes (deuterated leucine and glycerol) in 62 individuals with abdominal obesity. Results: In a multivariate analysis, among the morphological and biological parameters that may predict apoA-I FCR, liver fat (beta = .400, P = .003), and VLDL1-apoB (beta = .307, P = .020) were independently associated with apoA-I FCR. In a multivariate analysis, among the kinetic parameters, VLDL1-triglycerides (TGs) indirect FCR (beta = .357, P = .001), VLDL1-TG production rate (beta = 0.213, P = .048), and apoA-II FCR (beta = .667, P < .0001) were independently associated with apoA-I FCR. After adjustment for VLDL1-TG production rate, liver fat was no more correlated with apoA-I FCR. No association between apoA-I FCR and visceral fat was observed. Conclusions: We show that VLDL1 is an important independent determinant of apoA-I FCR and more precisely that apoA-I FCR is independently associated with both catabolism and the production of VLDL1-TG. In addition, we show an association between liver fat and apoA-I FCR that is mostly mediated by VLDL1-TG production. These data indicate that, in abdominal obesity, dysfunctional VLDL1 metabolism is an important modulator of HDL apoA-I catabolism

    Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study

    Get PDF
    Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD

    Efficient Plant Gene Identification Based on Interspecies Mapping of Full-Length cDNAs

    Get PDF
    We present an annotation pipeline that accurately predicts exon–intron structures and protein-coding sequences (CDSs) on the basis of full-length cDNAs (FLcDNAs). This annotation pipeline was used to identify genes in 10 plant genomes. In particular, we show that interspecies mapping of FLcDNAs to genomes is of great value in fully utilizing FLcDNA resources whose availability is limited to several species. Because low sequence conservation at 5â€Č- and 3â€Č-ends of FLcDNAs between different species tends to result in truncated CDSs, we developed an improved algorithm to identify complete CDSs by the extension of both ends of truncated CDSs. Interspecies mapping of 71 801 monocot FLcDNAs to the Oryza sativa genome led to the detection of 22 142 protein-coding regions. Moreover, in comparing two mapping programs and three ab initio prediction programs, we found that our pipeline was more capable of identifying complete CDSs. As demonstrated by monocot interspecies mapping, in which nucleotide identity between FLcDNAs and the genome was ∌80%, the resultant inferred CDSs were sufficiently accurate. Finally, we applied both inter- and intraspecies mapping to 10 monocot and dicot genomes and identified genes in 210 551 loci. Interspecies mapping of FLcDNAs is expected to effectively predict genes and CDSs in newly sequenced genomes

    A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fermented dried seeds of <it>Theobroma cacao </it>(cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust <it>T. cacao </it>cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected.</p> <p>Results</p> <p>Here, we describe the construction of a BAC-based integrated genetic-physical map of the <it>T. cacao </it>cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of <it>T. cacao </it>is 374.6 Mbp. A comparative analysis with <it>A. thaliana, V. vinifera</it>, and <it>P. trichocarpa </it>suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two <it>T. cacao </it>cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed.</p> <p>Conclusions</p> <p>The results presented in this study are a stand-alone resource for functional exploitation and enhancement of <it>Theobroma cacao </it>but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the <it>T. cacao </it>genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.</p

    Mechanisms of toxic action and structure-activity relationships for organochlorine and synthetic pyrethroid insecticides.

    Get PDF
    The mechanisms and sites of action of organochlorine (DDT-types and chlorinated alicyclics) and synthetic pyrethroid insecticides are presented with discussion of symptoms, physiological effects, and selectivity. The structural requirements for toxicity are assessed, and structure-activity relationships are considered for each subclass. Lipophilicity is important for all the groups because it facilitates delivery of these neurotoxicants to the site of action in the nerve. Steric factors including molecular volume, shape, and isomeric configuration greatly influence toxicity. Electronic parameters also have been demonstrated to affect biological activity in some of the groups of insecticides, e.g., Hammett's sigma and Taft's sigma * as indicators of electronegativity. New synthetic pyrethroids continue to be developed, with varied structures and different physicochemical and biological properties
    • 

    corecore