1,276 research outputs found
General properties and analytical approximations of photorefractive solitons
We investigate general properties of spatial 1-dimensional bright
photorefractive solitons and suggest various analytical approximations for the
soliton profile and the half width, both depending on an intensity parameter r
Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder
We theoretically demonstrate features of Anderson localization in the
Tonks-Girardeau gas confined in one-dimensional (1D) potentials with controlled
disorder. That is, we investigate the evolution of the single particle density
and correlations of a Tonks-Girardeau wave packet in such disordered
potentials. The wave packet is initially trapped, the trap is suddenly turned
off, and after some time the system evolves into a localized steady state due
to Anderson localization. The density tails of the steady state decay
exponentially, while the coherence in these tails increases. The latter
phenomenon corresponds to the same effect found in incoherent optical solitons
On the nature of Coulomb corrections to the e^+e^- pair production in ultrarelativistic heavy-ion collisions
We manifest the origin of the wrong conclusion made by several groups of
authors on the absence of Coulomb corrections to the cross section of the
e^+e^- pair production in ultrarelativistic heavy-ion collisions. The source of
the mistake is connected with an incorrect passage to the limit in the
expression for the cross section. When this error is eliminated, the Coulomb
corrections do not vanish and agree with the results obtained within the
Weizs\"acker-Williams approximation.Comment: 7 pages, LaTe
Incoherent matter-wave solitons
The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is
considerably affected by the presence of a surrounding thermal cloud and by
condensate depletion during its evolution. We analyze these aspects of BEC
soliton dynamics, using time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory.
The condensate is initially prepared within a harmonic trap at finite
temperature, and solitonic behavior is studied by subsequently propagating the
TDHFB equations without confinement. Numerical results demonstrate the collapse
of the BEC via collisional emission of atom pairs into the thermal cloud,
resulting in splitting of the initial density into two solitonic structures
with opposite momentum. Each one of these solitary matter waves is a mixture of
condensed and noncondensed particles, constituting an analog of optical
random-phase solitons.Comment: 4 pages, 2 figures, new TDHFB result
Vector solitons in (2+1) dimensions
We address the problem of existence and stability of vector spatial solitons
formed by two incoherently interacting optical beams in bulk Kerr and saturable
media. We identify families of (2+1)-dimensional two-mode self-trapped beams,
with and without a topological charge, and describe their properties
analytically and numerically.Comment: 3 pages, 5 figures, submitted to Opt. Let
The single-particle density matrix and the momentum distribution of dark "solitons" in a Tonks-Girardeau gas
We study the reduced single-particle density matrix (RSPDM), the momentum
distribution, natural orbitals and their occupancies, of dark "soliton" (DS)
states in a Tonks-Girardeau gas. DS states are specially tailored excited
many-body eigenstates, which have a dark solitonic notch in their
single-particle density. The momentum distribution of DS states has a
characteristic shape with two sharp spikes. We find that the two spikes arise
due to the high degree of correlation observed within the RSPDM between the
mirror points ( and ) with respect to the dark notch at ; the
correlations oscillate rather than decay as the points and are being
separated.Comment: 9 pages, 8 figure
Pattern Competition in the Photorefractive Semiconductors
We analytically study the photorefractive Gunn effect in n-GaAs subjected to
two external laser beams which form a moving interference pattern (MIP) in the
semiconductor. When the intensity of the spatially independent part of the MIP,
denoted by , is small, the system has a periodic domain train (PDT),
consistent with the results of linear stability analysis. When is large,
the space-charge field induced by the MIP will compete with the PDT and result
in complex dynamics, including driven chaos via quasiperiodic route
- …