150 research outputs found
Absence of Embedded Mass Shells: Cerenkov Radiation and Quantum Friction
We show that, in a model where a non-relativistic particle is coupled to a
quantized relativistic scalar Bose field, the embedded mass shell of the
particle dissolves in the continuum when the interaction is turned on, provided
the coupling constant is sufficiently small. More precisely, under the
assumption that the fiber eigenvectors corresponding to the putative mass shell
are differentiable as functions of the total momentum of the system, we show
that a mass shell could exist only at a strictly positive distance from the
unperturbed embedded mass shell near the boundary of the energy-momentum
spectrum.Comment: Revised version: a remark added at the end of Section
Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report
Background
Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet.
Methods
After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed.
Results
Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less resistant components. This indicates increased vascular stiffness in salt-loaded ZDF rats, which could be prevented by eplerenone but not by hydralazine. Collagen content was increased in ZL and ZDF rats on high-salt diet. Eplerenone and hydralazine prevented the increase of collagen content. There was no difference in elastin content.
Conclusion
Eplerenone and hydralazine prevented increased media-to-lumen ratio in salt-loaded ZDF-rats, indicating a regression of vascular hypertrophy, which is likely mediated by the blood pressure lowering-effect. Eplerenone has additionally the potential to prevent increased vascular stiffness in salt-loaded ZDF-rats. This suggests an effect of the specific aldosterone antagonist on adverse vascular wall remodelling
Vascular Alterations in a Murine Model of Acute Graft-Versus-Host Disease Are Associated With Decreased Serum Levels of Adiponectin and an Increased Activity and Vascular Expression of Indoleamine 2,3-Dioxygenase
Graft-versus-host disease (GVHD) is the limiting complication after bone marrow transplantation (BMT), and its pathophysiology seems to be highly influenced by vascular factors. Our study aimed at elucidating possible mechanisms involved in vascular GVHD. For this purpose, we used a fully MHC-mismatched model of BALB/c mice conditioned according to two different intensity protocols with total body irradiation and transplantation of allogeneic (C57BL/6) or syngeneic bone marrow cells and splenocytes. Mesenteric resistance arteries were studied in a pressurized myograph. We also quantified the expression of indoleamine 2,3-dioxygenase (IDO), endothelial (eNOS), and inducible NO synthase (iNOS), as well as several pro-and anti-inflammatory cytokines. We measured the serum levels of tryptophan (trp) and kynurenine (kyn), the kyn/trp ratio (KTR) as a marker of IDO activity, and adiponectin (APN). The myographic study showed a correlation of GVHD severity after allogeneic BMT with functional vessel alterations that started with increased vessel stress and ended in eccentric vessel remodeling, increased vessel strain, and endothelial dysfunction. These alterations were accompanied by increasing IDO activity and decreasing APN levels in the serum of allogeneic animals. The mRNA expression showed significantly elevated IDO, decreased eNOS, and elevation of most studied pro-and anti-inflammatory cytokines. Our study provides further data supporting the importance of vessel alterations in GVHD and is the first to show an association of vascular GVHD with hypoadiponectinemia and an increased activity and vascular expression of IDO. Whether there is also a causative involvement of these two factors in the development of GVHD needs to be further investigated
Complement Regulator FHR-3 Is Elevated either Locally or Systemically in a Selection of Autoimmune Diseases
Acute kidney injury (AKI) is a very common complication after allogeneic bone marrow transplantation (BMT) and is associated with a poor prognosis. Generally, the kidneys are assumed to not be no direct targets of graft-versus-host disease (GvHD), and renal impairment is often attributed to several other factors occurring in the early phase after BMT. Our study aimed to prove the existence of renal GvHD in a fully major histocompatibility complex (MHC)-mismatched model of BALB/c mice conditioned and transplanted according to 2 different intensity protocols. Syngeneically transplanted and untreated animals served as controls. Four weeks after transplantation, allogeneic animals developed acute GvHD that was more pronounced in the high-intensity protocol (HIP) group than in the low-intensity protocol (LIP) group. Urea and creatinine as classic serum markers of renal function could not verify renal impairment 4 weeks after BMT. Creatinine levels were even reduced as a result of catabolic metabolism and loss of muscle mass due to acute GvHD. Proteinuria, albuminuria, and urinary N-acetyl-beta-D-glucosaminidase (NAG) levels were measured as additional renal markers before and after transplantation. Albuminuria and NAG were only significantly increased after allogeneic transplantation, correlating with disease severity between HIP and LIP animals. Histological investigations of the kidneys showed renal infiltration of T cells and macrophages with endarteriitis, interstitial nephritis, tubulitis, and glomerulitis. T cells consisted of CD4+, CD8+, and FoxP3+ cells. Renal expression analysis of allogeneic animals showed increases in indoleamine-2,3 dioxygenase (IDO), different cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin 1 alpha [IL-1 alpha], IL-2, IL-6, and IL-10), and adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1), resembling findings from other tissues in acute GvHD. In summary, our study supports the entity of renal GvHD with histological features suggestive of cellmediated renal injury. Albuminuria and urinary NAG levels may serve as early markers of renal impairment
Recommended from our members
Source description and sampling techniques in PEREGRINE Monte Carlo calculations of dose distributions for radiation oncology
We outline the techniques used within PEREGRINE, a 3D Monte Carlo code calculation system, to model the photon output from medical accelerators. We discuss the methods used to reduce the phase-space data to a form that is accurately and efficiently sampled
Light-Promoted Hydrogenation of Carbon Dioxide¿An Overview
[EN] Hydrogenation of carbon dioxide is considered as a viable strategy to generate fuels while closing the carbon cycle (heavily disrupted by the abuse in the exploitation of fossil resources) and reducing greenhouse gas emissions. The process can be performed by heat-powered catalytic processes, albeit conversion and selectivity tend to be reduced at increasing temperatures owing to thermodynamic constraints. Recent investigations, as summarised in this overview, have proven that light activation is a distinct possibility for the promotion of CO2 hydrogenation to fuels. This effect is particularly beneficial in methanation processes, which can be enhanced under simulated solar irradiation using materials based on metallic nanoparticles as catalysts. The use of nickel, ruthenium and rhodium has led to substantial efficiencies. Light-promoted processes entail performances on a par with (or even superior to) those of thermally-induced, industrially-relevant, commercial technologies.The author thanks the Spanish Government (Ministerio de EconomÃa y Competitividad, MINECO) for financial support via a project for young researchers (CTQ2015-74138-JIN), and the ‘‘Severo Ochoa’’ programme (SEV 2012-0267). The European Union is also acknowledged for the SynCatMatch project (ERCAdG-2014-671093)Puga Vaca, A. (2016). Light-Promoted Hydrogenation of Carbon Dioxide¿An Overview. Topics in Catalysis. 59(15-16):1268-1278. https://doi.org/10.1007/s11244-016-0658-zS126812785915-16Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731Wang W, Wang S, Ma X, Gong J (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40:3703–3727Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776Armaroli N, Balzani V (2011) The hydrogen issue. ChemSusChem 4:21–36Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567de Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106Schach M-O, Schneider R, Schramm H, Repke J-U (2010) Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas. Ind Eng Chem Res 49:2363–2370Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257:171–186Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ Sci 5:9217–9233Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758Ozin GA (2015) You can’t have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy Environ Sci 8:1682–1684Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci 2:315–321Li Y, Lu G, Ma J (2014) Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation. RSC Adv 4:17420–17428Garbarino G, Bellotti D, Riani P, Magistri L, Busca G (2015) Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: catalysts activation, behaviour and stability. Int J Hydrogen Energy 40:9171–9182Carenco S, Wu C-H, Shavorskiy A, Alayoglu S, Somorjai GA, Bluhm H, Salmeron M (2015) Synthesis and structural evolution of nickel-cobalt nanoparticles under H2 and CO2. Small 11:3045–3053Sharafutdinov I, Elkjaer CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt J-D, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjaer CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6:320–324Garbarino G, Riani P, Magistri L, Busca G (2014) A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. Int J Hydrogen Energy 39:11557–11565Iablokov V, Beaumont SK, Alayoglu S, Pushkarev VV, Specht C, Gao J, Alivisatos AP, Kruse N, Somorjai GA (2012) Size-controlled model CO nanoparticle catalysts for CO2 hydrogenation: synthesis, characterization, and catalytic reactions. Nano Lett 12:3091–3096Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B-L, Tovar M, Fischer RW, Nørskov JK, Schlögl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, Stacchiola DJ, Liu P, Hrbek J, Fernández Sanz J, Rodriguez JA (2014) Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550Fiordaliso EM, Sharafutdinov I, Carvalho HWP, Grunwaldt J-D, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5:5827–5836Kohno Y, Tanaka T, Funabiki T, Yoshida S (1997) Photoreduction of carbon dioxide with hydrogen over ZrO2. Chem Commun 9:841–842Kohno Y, Tanaka T, Funabiki T, Yoshida S (2000) Photoreduction of CO2 with H2 over ZrO2. A study of interaction of hydrogen with photoexcited CO2. Phys Chem Chem Phys 2:2635–2639Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113Teramura K, Tsuneoka H, Shishido T, Tanaka T (2008) Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett 467:191–194Tsuneoka H, Teramura K, Shishido T, Tanaka T (2010) Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. J Phys Chem C 114:8892–8898Teramura K, S-i Okuoka, Tsuneoka H, Shishido T, Tanaka T (2010) Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K). Appl Catal B 96:565–568Kohno Y, Hayashi H, Takenaka S, Tanaka T, Funabiki T, Yoshida S (1999) Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. J Photochem Photobiol A 126:117–123Lo C-C, Hung C-H, Yuan C-S, Wu J-F (2007) Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 91:1765–1774Hoch LB, Wood TE, O’Brien PG, Liao K, Reyes LM, Mims CA, Ozin GA (2014) The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and visible light. Adv Sci 1:1400013Li M, Li P, Chang K, Wang T, Liu L, Kang Q, Ouyang S, Ye J (2015) Highly efficient and stable photocatalytic reduction of CO2 to CH4 over Ru loaded NaTaO3. Chem Commun 51:7645–7648Tahir M, Amin NS (2015) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A 493:90–102Tahir M, Amin NS (2016) Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chem Eng J 285:635–649Ahmed N, Shibata Y, Taniguchi T, Izumi Y (2011) Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. J Catal 279:123–135Ahmed N, Morikawa M, Izumi Y (2012) Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts. Catal Today 185:263–269Yang C-C, Vernimmen J, Meynen V, Cool P, Mul G (2011) Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. J Catal 284:1–8Thampi KR, Kiwi J, Grätzel M (1987) Methanation and photo-methanation of carbon-dioxide at room-temperature and atmospheric pressure. Nature 327:506–508O’Brien PG, Sandhel A, Wood TE, Jelle AA, Hoch LB, Perovic DD, Mims CA, Ozin GA (2014) Photomethanation of gaseous CO2 over RU/silicon nanowire catalysts with visible and near-infrared photons. Adv Sci 1:1400001Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J (2014) Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew Chem Int Ed 53:11478–11482Sastre F, Puga AV, Liu L, Corma A, GarcÃa H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801Hong J, Zhang W, Ren J, Xu R (2013) Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal Methods 5:1086–1097Yang C-C, Yu Y-H, van der Linden B, Wu JCS, Mul G (2010) Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction. J Am Chem Soc 132:8398–8406Kohno Y, Tanaka T, Funabiki T, Yoshida S (1998) Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2. J Chem Soc Faraday Trans 94:1875–1880Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T (2004) Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J Phys Chem B 108:346–354Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710Morikawa M, Ahmed N, Yoshida Y, Izumi Y (2014) Photoconversion of carbon dioxide in zinc-copper-gallium layered double hydroxides: the kinetics to hydrogen carbonate and further to CO/methanol. Appl Catal B 144:561–569Sabatier P (1910) Making methane or mixtures of methane and hydrogen, US Pat. 956734Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlögl R (1991) Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction. Catal Lett 11:157–168Lin X, Yang K, Si R, Chen X, Dai W, Fu X (2014) Photoassisted catalytic methanation of CO in H2-rich stream over Ru/TiO2. Appl Catal B 147:585–591Lin X, Lin L, Huang K, Chen X, Dai W, Fu X (2015) CO methanation promoted by UV irradiation over Ni/TiO2. Appl Catal B 168–169:416–422Sastre F, Oteri M, Corma A, GarcÃa H (2013) Photocatalytic water gas shift using visible or simulated solar light for the efficient, room-temperature hydrogen generation. Energy Environ Sci 6:2211–2215Sastre F, Corma A, GarcÃa H (2013) Visible-light photocatalytic conversion of carbon monoxide to methane by nickel(ii) oxide. Angew Chem Int Ed 52:12983–12987Zhao Y, Zhao B, Liu J, Chen G, Gao R, Yao S, Li M, Zhang Q, Gu L, Xie J, Wen X, Wu L-Z, Tung C-H, Ma D, Zhang T (2016) Oxide-modified nickel photocatalyst for the production of hydrocarbons in visible light. Angew. Chem. Int. Ed. 55:4215–4219Albero J, Garcia H, Corma A (2016) Temperature dependence of solar light assisted CO2 reduction on Ni based photocatalyst. Top Catal 59:787–79
Mechanisms underlying electro-mechanical dysfunction in the Zucker diabetic fatty rat heart: a model of obesity and type 2 diabetes
Diabetes mellitus (DM) is a major and worsening global health problem, currently affecting over 450 million people and reducing their quality of life. Type 2 diabetes mellitus (T2DM) accounts for more than 90% of DM and the global epidemic of obesity, which largely explains the dramatic increase in the incidence and prevalence of T2DM in the past 20 years. Obesity is a major risk factor for DM which is a major cause of morbidity and mortality in diabetic patients. The electro-mechanical function of the heart is frequently compromised in diabetic patients. The aim of this review is to discuss the pathophysiology of electro-mechanical dysfunction in the diabetic heart and in particular, the Zucker diabetic fatty (ZDF) rat heart, a well-studied model of T2DM and obesity
- …