49 research outputs found

    Minimax Controls of Uncertain Systems

    Get PDF
    Minimax controls for uncertain system

    The Value of Information for Populations in Varying Environments

    Full text link
    The notion of information pervades informal descriptions of biological systems, but formal treatments face the problem of defining a quantitative measure of information rooted in a concept of fitness, which is itself an elusive notion. Here, we present a model of population dynamics where this problem is amenable to a mathematical analysis. In the limit where any information about future environmental variations is common to the members of the population, our model is equivalent to known models of financial investment. In this case, the population can be interpreted as a portfolio of financial assets and previous analyses have shown that a key quantity of Shannon's communication theory, the mutual information, sets a fundamental limit on the value of information. We show that this bound can be violated when accounting for features that are irrelevant in finance but inherent to biological systems, such as the stochasticity present at the individual level. This leads us to generalize the measures of uncertainty and information usually encountered in information theory

    Zero-error codes for correlated information sources

    No full text

    Multi-agent Networked Systems with Adversarial Elements

    No full text

    Visual Data Fusion for Objects Localization by Active Vision

    Get PDF
    Visual sensors provide exclusively uncertain and partial knowledge of a scene. In this article, we present a suitable scene knowledge representation that makes integration and fusion of new, uncertain and partial sensor measures possible. It is based on a mixture of stochastic and set membership models. We consider that, for a large class of applications, an approximated representation is sufficient to build a preliminary map of the scene. Our approximation mainly results in ellipsoidal calculus by means of a normal assumption for stochastic laws and ellipsoidal over or inner bounding for uniform laws. These approximations allow us to build an efficient estimation process integrating visual data on line. Based on this estimation scheme, optimal exploratory motions of the camera can be automatically determined. Real time experimental results validating our approach are finally given
    corecore