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ABS TRAC T

The control of uncertain systems is considered as a decision problem.
Some general concepts, such as adaptivity, are analyzed in this light
and features common to many design methods are clarified. The
special case of worst-case, or minimax design, is considered in
more detail. The dynamic programming algorithm is discussed for
a class of linear problems with bounded perturbations, bounded con-
trol variables, and with sampled output of the state. A dual algo-
rithm using the support functions of reachable sets is proposed.
Bounds are obtained, relating the performance of optimal and sub-
optimal designs, when the criteria have the properties of norms.
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INTRODUCTION

Frequently, a controller for a plant must be designed in the

absence of a full, precise description of this plant; that is, in

the face of uncertainty. The selection of a design is then a special

case of the general problem "f decision under uncertainty.

In the first three chapters of the present work, _ome of the

possible approaches to this problem are considered and their

implications in the control context are investigated. An attempt

is made to discuss each concept on the basis of the minimum of

structure required, uncluttered by irrelevant assumptions.

Only deterministic controller,s, as o_posed to random controllers,

are considered. The performance _f controllers is measured by

a "supercriterion"; for instance, the expectation of th_ original

criterion Lor given a-priori probabilities or its supremurn for

given bounds on the uncertain quantities. The latter ca._, is that

of worst-case or minimax design.

Notions to which are give_ the names "optir_:._,_'_ "feedback"

and "adaptive" can then be defined, and this be_o:_ the introduction

of the notion of time. It is shown how optimization over open-loop

designs provides a-priori bounds for the improvement possible

by the use of adaptive controllers.

In Chapter HI, some first steps towards a theory taking the

time factor into account are outlined. Rather than pursuing this

subject further in full generality, only a specialization is considered

-I
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more _'eply: discrete-time systems with the minimax

definition of optimality. (Itis to be noted that many continuous-

time systems with sampled outputs are reducible to discrete-

time form. ) The solution of the correspond_,ng Optimization

problem is immediate in principle, by dynarr,ic progr _mming.

In the case of linear differential systems with sampled

output, the minimax optimization algorithm is best described

in terms of reachable sets under given constraints. In

Chapter IV, the formulas giving the support functions of such

reachable sets are derived. In Chapter V, the corresponding

dynamic programming algorithm is examined In more detail.

A dual algorithm which appears to present some advantages is

proposed. It is based on Fenchelts theory of conjugate convex

functions.

Since the computational effort for the determination of the

minimax desigz_, as above, is considerable, it is tempting to

design on the assumption that all uncertain quantities are fixed

at nominal values. Such a "naive" design can be found by the

less demanding algorithms for optimal control under certainty.

Both open and closed loop forms of the n_ive design can be

considered. In Chapter VI the question of the relative merit of

the optimal and the various supoptimal controllers is posed.

Some inequalities which may begin to throw light on this question

are obtained, though further research on this topic is ca_.led for.

ix

1966024151-010



In summary, the present work is of an exploratory nature.

One major advantage of the study of minimax design is the

absence of many of the existence problems that are common in

the stochastic approach. It is possible to concentrate at once

upon the physically or algorithmically relevant difficulties

created by the presence of uncertainty. In the end, it should be

possible to use any insight gained from minimax studies as a

guide in the investigation of alternative approaches. To some

degree such a cross-fertilization is exemplified by the bounds

on expectations mentioned in the last ch4pter.

x
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CHAPTER I

ON THE DECISION PROBLEM

1.1 DEFINITt()N OF THE DECISION PROBLEM

A decision problem consists of three non-empty sets D, N and O,

of a function M:D x N --'O, and a transitive relation < on O such

that between any two elements o 1, o z of O at least one of o 1 i o 2

and o z io 1 holds:

D is the set of possible decisions or "action space".

N indexes the uncertainty of the problem and may be

called the set of "states of nature", ( no relation

to the notion of state of dynamic systems).

O is the set of outcomes.

M is the function which determines which outcome will

result for a given decision and state of nature.

The relation i defines our preference among the

outcomes. We take "less" to mean '%etter" in

conformity with the control theory usage of min-

imization. Thus o 1 _ o z meanP, that o 1 is as

good or better than o Z.

1. Z NUMERICAL INDEXING OF OUTCOMES

Assume that we can assign to each element of O a real number

in such a way that the order between elements of O agrees with the

usual order of the corresponding numbers. That is, there exists a

function v :O -_R with the property

v(o l)<_.v(o 2) _ ° 1 <__0 2

-1-
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Then, if d_ is any monotone increasing function the composition _b • u

(defined by _b(p(o))) has the same property. Thus the function v is

very far from unique.

For any choice of u as above we may define a function

W:D x N"*R by W --v -M, that is

W(d,n) = v(M(d,n))

The 'Wpayofffunction" W suffers from the lack of uniqueness in-

herited from v •

I.3 THE CASE OF CERTAINTY

In case the set N has but one element (lacks entropy) the argu-

ment n of M and W becomes redundant. In this case of VVcertainty_

consider the set

Dop t = {deD:W(d) = infW(D)}

If it is not empty, its elements are the optimal decisions, because

no Letter outcomes can be obtained than those resulting from such a

decision. The set Dop t is independent of the particular choice of

the function v • Such is not the case for the set

D - {dcD:W(d) < infW(D) + c} c> 0

to which one might turn for help in case Dop t is empty. For fixed c

any decision d can be brought into D by appropriate choice of v •E

Therefore, the set D is only useful if a particular function v andE

a value of ¢ can be agreed upon. Otherwise, we might as well

consider the set

Dd, = {deD :W(d) _ W(d*)}

= {dcD :M(d) <_ M(d*)}

1966024151-013
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and attempt to agree upon the choice of d*. This is clearly as

difficult as the original p,'oblem so that nothing has been gained.

1.4. PARTIAL ORDERING OF DECISIONS
L

Define a relation on D, ..e., among decisions by

d I <__dz'_=_ ( V n_N) M(dl, n) <__M(d2, n)

Then this relation is tra_,s'.tive and the relation

d I " ¢!2_> d I < d2 and d2 < d 1

is an equivalence relation.

Ifwe consider the relation < among equivalence classes of

decisions, then it is a partial order. On the set _ itselfit is a

partial order modulo equivalence. The set D* = {d*cD : ( V dcD)

d* < d } is usuall_rempty. When it is not, then it is an equivalence

class and its members are optimal since decisions outside D* cannot

yield better outcomes, for any state of nature, than the outcome

resulting from a decision in D* for the same state of nature.

Decisions in D* are called dominant decisions.

In the absence of dominant decisions the partial order enables

only the definition of the (possibly empty) set D of minimalm

controllers and of the collection _" of complete sets of controllers, by
C

Dm = {dm_D: (VdeD)d<_ dm ::_ din_< d }

and

_c = {DcC::'D:(VdcD) ( 3 dcCDc)d c< d }

1966024151-014
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When D is not empty and belongs to _ then one may consider
m c

the problem to be reduced to the selection of a decision in D
ITI

Indeed, in that case D is the smallest set such that for all decisionsm

in D there exists a better decision in D , in the sense of them

partial order.

D is sometimes called the set of "admissible I_ or "non-inferior"
rn

decisions.

1.5. RULES OF CHOICE: HEDGED AND UNHEDGED

To select a decision on a rational rather than intuitive basis it is

necessary, in the absence of dominant decisions, to agree on a rule

of choice. Such a rule should be compatible with the given preference

relation among the outcomes, hence with the partial order of D

defined above.

The rule of choice, unlike the preference relation among outcomes,

takes into account the presence of uncertainty of the state of nature

and possible a priori knowledge (such as probabilities) about this

uncertainty.

In practice there are two approaches: unhedged and hedged rules

of choice. Unhedged rules create an order among decisions, expressed

by assignment of a real (or extended real) number to each decision in

D. The situation becomes, then, the same as in the absence of

uncertainty (see Section 1.3).

Hedged rules randomize the decision process by specifying a

0"-algebra _; D of subsets of D and considering the new problem

of selecting an element of the set l_ of all probability measures of

_ D" The rule orders the set D by assignment of a real (or extended

1966024151-015
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real) number to each element of D. The situation becomes again

the same as in the absence of uncertainty but now with D as the

action space. If an element of D, say d, is selected, the correspond-

ing &ction consists in the activation "at the last minute" of a random

device which selects an element d of D according to the probability

measure _. This decision d is then made in the original problem.

When the set D is countable, the collection of all its subsets is

a natural and convenient choice of T_D . When the set D is not

countable, then _D would be derived from the structure (usually

the topological structure) of D. Unfortunately, even the preliminary

step of _,greeing on a topological structure for D is by no means

clear. Just consider the case where D is the set of t'all w' nonlinear

feedback controllers for a given plant.

1.6 UTILITY

The rules of choice used in practice take account of the preference

ordering of outcomes by way of the numerical function v. Some rules

have the property that the resulting decisions (if some exist) remain

the same when v is replacedby & , v as in Section l.Z and the same

rule of choice is used. Most rules of choice, however, do not possess

this property and require agreement upon a specific choice of v,

the "utility function".

In particular, agreement on a utility function is necessary when

expectations under probability measures _.re involved and also whet. a

concept of c-optimal decision is used.

f

1966024151-016



-6-

Axiomatic treatments of the establishment of the utility function

may be found in Von Neumann and Morgenstern and in Pratt, Raiffa

and Schlaiffer. Essentially, these authors show that if a set of

reasonable axioms is accepted, the existence of a unique utility

function follows. The axioms in question are essentially reasonable

but by no means compelling. The difficulty stems from the following

requirement of these axioms. Let a, b, c be three outcomes with b

strictly preferable to a and c strictly preferable to b (and hence

to a). Consider the mixed outcome f(p) for 0 __ p __ I which

consists in a probability p of outcome c and probability (l-p) of

outcome aj then it is required that there always exists a value p_

of p, with 0< p*< l such that outcomes b and f(p_) are equivalent.

This axiom fails to hold if a "worst case" point of view is adopted.

Thus acceptance of the axioms rules out one of the most simple-minded

and logically consistent approaches to the decision problem.

In the sequel we will assume that a specific function v has been

selected. For each rule of choice it will be clear whether the results

are or are not invariant under monotone remapping of v into _ * v.

I.7 REFORMULATION OF THE DECISION PROBLEM

Once the function v has beer. selected, a decision problem takes

the form (D, N, W) where D is the action space, N indexes the

uncertainty and W:DxN ---R (or Re) defines the utilityof the outcome

or at least the preference relation among outcomes.

1966024151-017
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An unhedged rule of choice may now be defined as follows:

Definition: An unhedged rule of choice p is a function

which associates to each decision problem (D, N, W)

in a set P of problems (the domain of the rule) an

extended real valued function J ffi p(D, N, W) on

the set D of the argument problem and satisfies

(a) (V (D,N,W) eP) (Vd l, d 2eD)

[( V ncN) W{dl,n) < W(d2, n)] _ff{dl) < 3(dz)

where J = p(D,N,W)

(b) Let S D be the set of all mappings of the set D onto

itse._f which swap two elements of D and leave the others

unchanged. Then it is required that

(bl) (V(D,N,W)eP) (VareSD) (D,N, Woar)_P

(bZ) (V(D,N,W)eP) (Va'eS D)

p(D,N, Wo_r) = _rop(D,N,W)

Requirement (a) expresses the compatibility of p with the partial

ordering inherited from the outcome preferences. The symmetry

requirement (b) expresses the independence of the a-priori knowledge

of the state of nature, as embodied in the rule of choice, with respect

to the selection of a decision. We conjecture that every meaningful

problem can be cast into a form in which this independence is realized.

The function J obtained by the rule of choice may be called a

supercriterion to distinguish it from the function W which depends

on the uncertainty and corresponds to the usual concept of a criterion.

1966024151-018
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A similar precise definition of the notion of hedged decision

rule would depend on whether the or-algebra on D is considered as

part of the problem data to which the rule is applied or is considered

to be selected by the rule.

I. 8 VALUATIONS AND EVALUATORS

For a given decision problem (D,N,W) there corresponds to

each decision d a function on N, defined by W with d fixed.

Definition: The valuation of a decision d is the function

W(dj .):N---R(or Re). The value mapping V of

the decision problem (D, N, W) is the function which

associates to every element of D the corresponding

valuation.

The range V(D) of V is a subset of the set of all functions from

N to R e . Note that valuations are partially ordered by pointwise

inequality and that this partial order is precisely the one which defines

the partial order of the corresponding decisions.

An important special class of unhedged rules of choice is the class

of evaluators, that is rules assigning a number to a decision solely

on the basis of the corresponding valuation. The supremum of the

valuation and its expectation under a given probability measure are

prime examples of evaluators.

Definition: A function C:_(C)--,R e is an evaluator if (a) the

domain _ (C) consists of pairs (N, _) where N is

a nonempty set and _ a function from this set into

R (or Re).

1966024151-019
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(b) Whenever (N,_I) and (N, _Z ) belong to _(C)

and ( Vn eN)_l(n )<_2(n), that is, _1 <_2 in

the partial order, then C(N,_I ) <_ C(N,_2).

When a fixed N is under discussion, the first argument N of C

is redundant and need not be written. In that case of fixed N the

domain of C is a set _(C) of functions from N into R or R
e

An evaluator C is applicable to a decision problem (D, N, W)

if all valuations (N,V(d)) are in the domain of C. For fixed N this

requirement reads V(D)c_(C). When an evaluator is applicable to

a decision problem the function J:D ---R e defined by J(d) = C(N, V(d))

is the corresponding supercriterion. The rule of choice is to select

decisions, if some exist, which minimize J.

I.9 THE GUARANTEED PERFORMANCE EVALUATOR

The pessimistic decision maker will consider the worst case re-

sulting from each decision. This amounts to the use of the guaranteed

performance evaluator, defined for any pair (N, _) by

C(N,_) ffi sup _(n)
neN

One technical advantage of this evaluator is that it is applicable to

every decision problem. Note that it is not necessary that the

supremum be a maximum, the "worst case" need not exist. One has

J(d) = sup W(d,n).
n_N

The study of this evaluator is motivated by the desire to assess in

advance what can happen when a given decision is selected, on any

basis whatsoev_ On-. would then compute the guaranteed performance

1966024151-020
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for that decision. It appears worthwhile to have a standard of

co_nparison for the number so obtained, and the best guaranteed

performance.

inf sup W(d, n) = inf J(d)
deD heN deD

is eminently suitable as such. The determination of this quantity

amounts to considering the decision problem from the point of view

of optimizing guaranteed performance.

The guaranteed perfornance J(d) may very well turn out to be

independent of d. This is likely if the outcomes are ordered into

Just two equivalence classes (success and failure) with the function v

taking only two values. If for each decision there is at least one state

of nature leading to failure J will be constant. Another possibility

is that J be constant with the value +co because V(d) is unbounded

for each d. Since extremization commutes with monotone functions,

cptirnality for guaranteed performance is independent of the selection

of the utility function v.

I. I0 EXPECTED PEI_FORMANCE EVALUATORS

For fixed set N, an expected performance evaluator C is defined

by a 0--algebra on N and a probability measure _ on this 0--algebra.

The domain o_ (C) is the set of }_-integrable functions on H, ausmented

by the functions having �mor -co as [A-integral. The definition

is C(cb)= f Nb(n) d_n)_ E qb(n).

1966024151-021
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The applicability of such an evaluator to the problem (D, N, _.')

must be carefully checked in each case. If applicab'_: the super-

criterion is

J(d) = F, W(d, ,t)

and the rule oi choice is to sele,_.tdeci.stons mini.-n_,z,?ngJ, if some

exist. The optimal performarzce is

inf E W{d, n_
deD _(n)

1. 1l GUARANTEED EXPECTED PERFORIviANCF, EVALUATOR$

There may be a set of probability measur_.._ o, a c'>mmon er-algebra

on N, one such measure _ta for ea:.h element a of the index set A.

Then one may define an eval_uator, for fixed N, by

C(_b) = sup E _(n)

ac A _a(n)

The domain _ (C) consists of the functions _ which are tta, integrable

for each aeA, with the values :_c_ all_wed.

In that case the 3uper_.riterion is

J(d) = sup E W(_ 0n)

a e A _a(n)

and the optimal guaranteed expected performance is giver by the

expression

t

t •
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inf sup E W(d, n)

deD acA _a(n)

The rule of choice is to select decisions for which this in/imum is

attained, if some exist.

We note that the two previously considered types of evaluators

are special cases of the present one. Expected performance corresponds

to the case where A consists of a single element. Guaranteed per-

formance is obtained by letting the rr-algebra be that of all subsets

of N and by taking A = N with _n the atomic measure with unit

weight at point n.

It is only in the latter case of guaranteed performance that the

rule of choice is independent of the selection of the utility function v.

This advantage of the guaranteed performance evaluator is lost when

it is used _s a basis for numerical comparison of decisions and also,

of course,when c-optimal guaranteed performance is considered.

I. 1Z THE INTERCHANGE INEQUALITY, OPVALUE AND LOPVALUE

The set of all extended real-valued functions on N is a complete

lattice under the partial order induced by pointwise inequality.

(Every subset of such functions has an inflmum and supremum under

the partial order. )

Given a decision problem (D, N, W) define its minimal valuation

_m by

_bm = inl V(d)
dc D

that is _bm(n ) = in/ W(d, n)
deD

An evaluator C is completely applicable to a decision problem

1966024151-023



-13-

if it is applicable and, in addition, the minimal valuation belongs

to the domain,_)(G).

Note that guaranteed performance is completely applicable to

any decision problem.

If an evaluator C is applicable to (D, N, W) then we define the

corresponding opvalue (optimum value) as the extended real number.

v = in/ C(V(d))
deD

If C is completely applicable then we can also define the lopvalue

(lower optimum value) as

v' = C(_bm)

where dgrn is the minimal valuation of the problem.

In that case, we have the interchange inequality:

V I < V

Proof: By definition of the minimal valuation

(Vd• D) _rn <- V(d)

under the partial order.

By definition of an evaluator and by the assumption of complete ap-

plicability, this implies

(VdcD) C(_rn ) < C(V(d))

Taking the in/inurn over all d in D,

C(_brn)< in/ C(V(d))
deD

or

v t< V

as claimed. The case where v = v' is called the zero gap situation.

J
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When v > v t *he positive extended real number v - v' is uniquely

defined and is called the gap.

For a given decision problem the opvalue , lopvalue and gap all

depend on the evaluator used.

The interpretation of the gap is the following. If the decision must

be made in the assumed way, the value of the evaluator cannot be reduced

below the opvalue v. If, on the other hand, the problem is changed

to one in which the actual value of n wiU be made available shortly

before the decision must be selected, so that the decision can be taken

under conditions of certainty, then before the value of n becomes

known, there is stilluncertainty as to the results but it can be asserted

that the value of the evaluator can now be reduced no lower than the

lopvalue. In a zero-gap situation the effect of "spying" is nil as far

as the value of the evaluator is concerned. If the gap is positive it

represents the value of "spying" in terms of the evaluator.

1.13 RELATION TO GAME THEORY

The zero gap situation for the guaral_teed performance is known

in game theory as the case of a pure value. When the gap is positive,

game-theory recommends the use of hedged rules of choice. It

abandons the guaranteed performance in favor of a merely expected

performance whose value is numerically more favorable, despite the

fact that the guaranteed performance under the h...tged optimal decision

procedure may be worse than the guaranteed performance of some un-

hedged decisions.
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EXAMPLE: Consider the game with payoff matrix

a _ 7
a 2 2 -1

b 5 -4 - 10

c -4 -1 8

The minimizing player chooses among a, b, c and the maximizing

player among _, _, 7.

The pessimistic strategy is to select the strategy for which the

worst possible result is as good as possible. This is a for one

player ct or _ (select _) for the other player. The optimistic

strategy is the one which would bring the greatest reward if one were

able to direct the opponent's move. Here b and 7 are optimistic.

The ruost dangerous strategy is the one the opponent wishes for if

he is playing his optimistic strategy. Here c and 7 are the most

dangerous. The equal probability strategy selects at random among

abc or a_7 with probabilities 1/3.

The Von Neumann strategy is the one which gives a saddle-point

4 5

for the expectation of the payoff. Here its probabilities are (0, -_, -_)
2 1

for the minimizing player and ( _, 0, -_) for his opponent. Finally

the maximizing player might be following Murphy's law:* he plays

ct against a and b, 7 against c regardless how the selection of

a, b, or c was made.

The values or expectations of the resulting payoff are tabulated

below for various combinations of these strategies.

Murphy's law: anything that can go wrong,will.

P
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(a) most dg.

pess. opt. = prob VN Murphy guarantee

pessimistic 2 - 1 1 1 2 2

optimistic 5 -1 0 -3 0 5 5

most dangerous - 4 8 1 0 8 8

= prob. 1 - 1 -1/3 +1/3 5 8

V.N. 0 0 -7/9 0 s

The calculation of the payoff against Murphy is the expectation of the

payoff with respect to the probabilities of a, b, c. The "guarantee"

is obtained by applying Murphyts law to the minimizing player's chance

device: consider the worst selection among those with positive

probability.

It should be clear from this example that no randomized strategy

can give a guarantee lower than that obtained by the pessimistic

strategy, i.e., the upper value of the game.

In particular, the Von Neumann strategy is not optimal in the sense

of guaranteed performance. To clarify this apparent contradiction,

distinguish two cases.

Case I: The decision maker (the minimizinel player) decidesj for

reasons which need not concern us, to be able to guarantee the results

and therefore uses the guaranteed performance evaluator to assess any

type of decision, hedged or unhedged. In this case he can under no

circumstances obtain a guarantee better than the opvalue of the

guaranteed performance evaluator. If the gap is positive the hedging

procedure suggested by game theory, which may yield a better expected

performance, is definitely incorrect and he must avoid it.
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Case II: The decision maker considers a w-algebra over N

and accepts his ignorance as to the probability measure in force.

The set A is now the set of all probability measures over the

0"-algebra. He chooses the guaranteed expected performance as

evaluator to select unhedged decisions. Then, assuming the technical

difficulties of integrability are resolved, he necessarily obtains the

same opvalue as for the guaranteed performance evaluator. Indeed,

the set A contains in particular the atomic measures with unit weight

at a point n. Thus the guaranteed expected performance can not be

lower than the guaranteed performance. The opposite inequality is

due to the fact that expectation is order-preserving, and we must have

equality.

Now the possibility exists that a hedged decision give a better

guaranteed expected performance than the opvalue for unhedged

decisions. This improvement is precisely what game theory accomplishes

and he should avail himself of the possibility. The point is that by

choosing guaranteed expected performance he declared himself content

with a mere expectation and if such is the case hedging can often yield

an improvement.

1.14 CERTAINTY EQUIVALENCE AND WALDtS DECISION THEORY

The zero-gap situation for expected performance is also known

as certainty equivalence, and is expressed by

irLf E W(d, n) = E ird W(d, n)
d eD _(n) pL(n) d•D

Note that in game theory the interchange of extremization with ex-

pectation is never considered. This is because the "spying" of game

#
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thecty is directed against a human opponent. Random devices are

considered spy-proof. In the context of control, with nature as

"opponent'_ spying is accomplished by an increase of the measurements

taken and this can be done in a situation described by probabilities.

For the case of guaranteed expected performance with a set A

of probability measures I_a over N the same difference of point

of view between game theory and the evaluator approach is

encountered.

The opvalue v is defined by

v = in/ sup E W(d, n)

'_D a _ A _a(n)

The lopvalue v' by

v' = sup E in/ W(d,n)

a_A _a(n) dcD

Define v" the "game-theoretic lower value" by

V" -- sup irff E W(d, n)

a¢ A dcD FLa(n}

Consider a game in which the minimizing player chooses d in D,

his opponent chooses a in A and the payoff is

W* (d, a) = E W(d, n)

PLa(n)

For this game, denoted by (D, A, W*), the game-theoretic upper

value is v and the lower value v".

By the interchange inequality we have

V > V tl > V l

Therefore the zero-gap situation v = v' implies that the game has

a pure value v = v" but the converse is false.
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Wald's statistical decision theory amounts to the following:

if v = v" guaranteed expected performance is the rule

of choice (whether or not v" = v I)

if v > v" switch to hedged decisions according to the

usual game-theoretic procedure applied to (Dp A, W*)

Our point of view is different: v repreJ_nts the limit on the

performance possible In the given problem, as judged by the

evaluator; v f represents the limit for the modified problem, in

which "spying" allows one to make the decision as a function of n,

as judged by the evaluator before the value of n becomes known;

v" has no special significance.

i. 15 SOURCES

Game-theory, utility theory and their relation to decision

making were first clarified by Von Neurnann and Morgenstern [58].

A broad application of game-_heory to statistical decision

making was then proposed by Wald [59].

In view of some objections to the pessimism of game theory,

when the opponent is nature, a great deal of eHort went into the

axiomatic study of decision making_ see the books by B1ackwell

and Girshick [10], by Thrall et al. (especially the section by

_._ilnor[55]), by Luce and Raiff_t[38].

In more recent times favor has gone to the approach in which

a priori probabilities are estimated, however roughly, and the

expectation of utilityis used as supercriterion. A strong argument

*Numbers in [ ] refer to numbered items in the bibliography.

J
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for this procedure can be found in Pratt, Raiffa and

Schlaifer [47].

Consider the following statement: "There is no way to avoid

having to make a decision as to the rules by which decisions are

to be made." It is a shocking statement because of its

circularity, One may say that decision theory was developed

in an attempt to "disprove" this statement but ended up by

"proving" it.

Sometimes the only uncertainty in a decision problem is

the choice of the preference relation among the outcomes.

Formally this is just a special case: the competing preference

relations are indexed by the set N. The problem of vector-valued

criteria (see Zadeh [64] ) is of this nature.

m
. _-- _ . _4 _ _ m
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CHAPTER II

UNCERTAIN CONTROL PROBLEMS

_-. 1 INTRODUCTION

The distinction between "plant" and "controller" is in many

ways an artificial one. For examplep the compounding of d. c.

generators may be viewed either as an improvement of design of

the plant or as a form of feedback control.

The interest in a clear-cut distinction between plant and con-

troller has been reirfforced by the advent of the computer. "the

plant is now taken as some process with actuators accepting inputs

in computer signal form (analog or digital) and with sensors providing

outputs in the same form. The actuators and sensors are considered

part of the plant. The controller is viewed as an on-line computer,

with a programj which makes the actuator input signals some function

of the sensor output signals.

The uncertainties as to the behavior of the plant_ as to the demands

that will be made of it and as to the operation of actuators and sensors

are all considered as uncertainties of the plant. The controllers

under consideration are defined by those operators from sensor outputs

to actuator inputs which can be realized with negligible error and un-

certainty by the available data processing equipment.

In this view two problems arise:

Problem I: Assuming the plant to be already designedt or given

by natured find a controller such that the system will

give satisfactory performance in some sense.

-21 -
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Ideally, the design of a plant, including the choice of actuators

and sensors, should take the need for control into account. When

faced with the total design task, one needs to consider:

Problem H: How do the solutions of problem I, and especially the

attainable performance, depend on design parameters

of the plant?

At least abstractly, the total design task reduces to a problem of the

first type. One need only consider the controller as setting the values

of the design parameters at the beginning of the process. The corre-

sponding actuator is the builder of the plant. Note that what distinguishes

design parameters is that they must be fixed at the outset and can not

be changed during the process under consideration, they are thus

equivalent to adjustable initial conditions.

2.2 THE NEED FOR PRECISION

In this chapter and the one following we state our point of view on

uncertain control systems in a precise mathematical fashion. Thus

specific definitions are given to terms that have been used with many

loose meanings and will certainly continue to be so used. Also a

large number of new terms are introduced.

We want to state explicitly that these definitions are not considered

to be the only suitable ones. It is clear that loose notions as crucial

as "feedback", "adaptive", "optimal", etc., can be made precise

in many different waysB according to particular points of view. What

is inadmissible, and leads to fallacies, is to use these notions as if

they were precise without giving a definition.

Let us point out what the definition of a property must do. It

must precisely state the class of objects under consideration and it

must provide an unambiguous test to decide whether an object in the
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class does or does not have the property. In other words it must

specify a set and a partition of this set it,to two complementary

subsets.

Many statements about general control notions are not definitions

in the above sense or else are vitiated by extraneous assumptions,

such as linearity.

The need for extreme precision is best illustrated by listing a

few statements which, from e,.tr point of view, are fallacious.

Fallacies:

1. I_eedback is a property of certain controllers.

2. Feedback is a property that a control system ma_ _ possess

in the absence of any uncertainty.

3. A control system is adaptive if it consists of a Dlar_t, a

controller which applies inputs to the actuators dependent on

sensor outputs and a "supervisor" which changes the

structure of the controller in a way dependent on sensor

outputs.

4. Filtering, estimation or identification problems can not

be considered as control problems.

5. A controller for an uncertain plant should always consist

of two independently designable parts: (l) an identifier or

estimator which determines the value of the uncertain

quantities and (Z) a controller designed without taking

uncertainty into account.

g
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6. Suppose a plant is operated in the morning for identi-

fication and in the afternoon for business. Then, a) the

problem as to what to do in the morning may be treated as

a separate probtem, the results of which are then used

to solve the problem of operation in the afternoon.

b) the entire dayWs operation is something beyond a

control problem.

7. The synthesis of optimal control in feedback form is

always at least as good as the open-loop optimal control.

It wi 1 turn out that the most basic concepts can be defined in-

dependently of the notion of time and therefore of the notion of state.

Full advantage is taken of this fact since it is inadvisable to use any

unnecessary notions in basic definitions. The crucial role which

time will play later on is due to the simplifications that result from

the use of state concepts. With the introduction of time new compli-

cations will arise. These matters will be examined in Chapter III.

Z. 3 PLANTS

Definition 2.1 A plant is an ordered quadruple (U, (_, Y, S) in

which U,Q and Y are nonempty sets and

S:UxO--Y.

U is called the input set, Q the uncertainty- set,

Y the output set and S the system function.

Elements of U are called inputm, elements of Y

outputs, elements of Q uncertainties.
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Definition 2.2 The effective output set of the plant (U, O, Y, S)

is the subset S(U, Q) of Y.

Definition Z. 3 A determinate plant is a plant whose uncertainty

set is a singleton (a set with just one member).

Definition Z. 4 A filter plant is a plant whose system function is

independent of its first argument (the input).

Definition 2.5 A mute plant is a plant whose system function is

independent of its second argument (the uncertainty).

Definition 2.6 An outputless plant is a mute plant which is also

a filter plant (i. e., the effective output set is a

sing le ton).

Definition 2.7 An inputless plant is a plant whose input set is a

singleton.

Filter plants are so named because they arise in filtering problems

considered as control problems. Mute plants are so named because

their output tells nothing about the uncertainty. Clearly, every

determinate plant is mute, since there is nothing to tell.

If A is a nonempty set and f:U x Q x Y --_A a function arising

in the study of a plant (U, O, Y,S), then f may always be reduced to

a function g:U x Q ---A by defining g(u, q) = f(u, q, S(u, q),_.

Since the variables u and y are externally accessible, functions

expressible in terms of these variables only have special significance.

Definition 2.8 A function g:U x G --_A is an external function for

the plant (U, Q, Y, S) iff

(VucU) (V ql' qzeQ) S(u, ql ) = S(u, qz ) :_ f(u, ql)ffi f(_oR)

t
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"4

This is the necessary and sufficient condition for the existence

of a function h:U x Y---A such that g(u9 q) = h(u,S(us q)).

Then the restriction of h to the set {(u, S(u, q)) I ueU, q_Q}--UxY

is unique and the values of h on the complement of this set are im-

material.

Z. 4 CONTROL SYSTEMS AND FEEDBACK

Definition 2.9 The set 1-(P) of all controllers for plant P is

the set of all functions _:Y--U which have the

property that for each fixed q in Q the equation

u = *f(S(up q)) has one and only one solution (depen-

dent on q) for u.

In any control problern a subset FC I'(P) is given: the set of

all controllers under consideration. The definition of F will take

into account causality and any other practical limitations.

If _ is in I"(P) then the simultaneous equations

y = S(u,q)

u .

have exactly one solution for u and y, dependent on q, for each

fixed q in Q.

Definition Z. I0 A control system is a pair (P,*f) where P is

a plant and *f a controller for P.

Definition Z. I I The loop function of control system (P, _) is

the function L :UxQ--- U defined by L (u, q)=_(S(u, q))

Definition Z. 12 The input mapping of control system (P, _) is the

function m :Q--4J which maps q into the solution
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my(q) of the equation u = L (u,q)

Consequently my(q) = L (m (q),q) =_/(S(m/(q),q)) holds for all

q in Q and _ in I_P), by definition.

The next step is to make precise the notion of feedback.

Definition 2, 13 A controller _ for a plant P is blind if "y

is a constant function. It is effectively blind

if 3' is constant on the effective output set of P.

A blind controller _ is completely defined by the constant

value u of _(y_. By "the blind controller u" is meant the controller

-y with h'(Y) = u for all y in Y. The input set U may thus also

be called the set of all blind controllers for P. When considered

as such, U is always a subset of I"(P)_ which proves that r_P)

is never empty.

Definition 2.14 (P, 7) is an open-loop control system if its input

mapping is constant, otherwise it is a feedback

control system.

Note that a control system may be open-loop even for a con-

troller _ which is not (effectively) blind. It may for instance,

happen that changes in q produce changes in y insufficient to bring

_,(y) out of a dead-zone. The system is open loop when 3' is constant

on the set {_e(m3,(q), q)eY:qeQ} and then the set rn (Q) is a singleton.

An immediate consequence of definition 2.14 is

i

I
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Theorem Z. 1 If a control system (P, 7) satisfies one or

more of the tollowing 3 conditions:

(1) P is inputless

(Z) P is mute (afortiori: outputless or

deter minate )

(3) T is effectively blind (afortiori: blind)

then it is an open-loop control system.

Thus there is no such thing as a determinate feedback control

system. It is only for certain special types of plant that the only

way to obtain an open-loop control system is to choose 7 effectively

blind.

Theorem 2.2 If a plant P has the property that the set

Y = {S(u,q)eY:qeQ} is independent of u andU

if the control system (PIT) is open loop, then

7 is effectively blind.

Proof: Since (P,T) is open loop m (q) is constant with some

value u*. This irnplies that T(y) = u* for all y in the set YUS"

But, by assumption, Yu is independent of u, so that Yus =

U Y = s(ua (_ the effective output set. Thus 7 is constant on
ueU u

this sett hence effectively blind. Q.E.D.

An application of this case is given in

Theorem Zt3 If P is a filter plant and (Pp7} is open-loop

then 7 is effectively bUnd.
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Proof: Filter plants trivially satisfy the assumption of theorem 2. _.

Q.E.D.

As illustration, consider the case of a tracking servo. Then

the set U is the set of a11 time functions describing possible input

signals to the power chain_ the set Q is the set of all time functions

that the servo may be called upon to track_ the set Y consists of

pairs: an element of Q is paired with a time function that may

be received from the servo output sensors.

Since the first component of an element yeY is directly

determined by qeQ and the second component is a known function

Of u_U (assuming no uncertainty in the power chain), the mapping S

is weU defined. Since time plays a role one is restricted to the use

of physically reaUzable (i. e. 0 non-predictive) controllers

7:Y---U and there may be many other restrictions. But there is no

magic reason why the controller 7 should depend only on the difference

called error.

If the subtraction is carried out in the plant and Y is the set of

error time functions one can reconstitute the two terms of the sub-

traction as long as the power chain is perfectly known. If, on the

other hand, the power chain is uncertain also, say because of noise,

then Q is a subset of the cartesian product of the set of all time

functions to be tracked and the set of aU noise time-functions. Now

there is a genuine loss if the controller receives only the error sigrL'_l,

Indeed, every realizable 7 dependent on the error signal only i_

realizable if both terms of the subtraction are received but no longer
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vice-versa, and it can never be harmful to have a choice over

a larger set of possible controllers.

2.5 VALUED PLANTS AND CONTROL PROBLEMS

Definition 2.15 A valued plant is a pair (Pt K) where

P= (U,C)jY, S) is a plant and K:U xQ---R e

is a function_ the cost function or criterion

of the valued plant.

The value of K(u, q) is interpreted as a cost so that K(Ul_ ql ) <

K(uz, q2 ) means that (ul,ql) leads tc a result preferable to

(uz, qz).
The extended real line 11 is used because

e

a) real valued criteria are included as a special case.

b) R e is closed under supremum while 1% is not.

c) it may sometimes be convenient to introduce constraints

by letting K(u, q} be infinite when (u_ q} leads to violation

of constraints.

Definition 2.16 A control problem (P, K, I') is a valued plant

(P,K} together with a subset _" of the set I_P}

_f all controUers for plant P.

Definition Z. 17 A valued control system (P, K, 7) is a valued

plant (PpK) together with a controller _ for P.

Thus a control problem is equivalent to a set of valued control

systems with the same valued plant.

I
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Definition 2.18 *The payoff function of a control problem (P, K, F)

is the function W:F x Q -_ R defined by W(% q) --e

K(m (q),q) where my is the input mappin_ of

(P,_). W is the restriction to I" xG of the payoff

function of (P, K, £(P)) which is called the 1_yoH

function of the valued plant (P, K).

2.6 DECISION BY EVALUATORS

The control problem (P, K, I_) can be cast in the form of a

decision problem (I', (_s W) where F is the set (formerly called D)

of possible decisions and G the set (formerly called N) of possible

"states of nature".

Accordingly, by Chapter It one has the following notions:

a) valuations are functions from Q into ReS

b) the value mapping V associates a valuation to each

element of 1":. V(_')= W(_,," ),

c) valuations are partially ordered by pointwise inequality

and this defines equivalence and partial order among the

elements of 1_,

d) the minimal valuation _m is defined by

t0m(q) = inf W(% q)
_eF

e) evaluators, their applicability and complete applicability

to a control problem are defined,

f) the opvalue v and lopvalue v' of control problem

(P,K, F) with evaluator C (assumed completely applicable)

The cost of implementing controller 7 is neglected, otherwise it
would have to be included in the definition of W.

f

|
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are given by

v -- in/ C(V(_))
_cF

v' - C(_m)

and satisfy v' < v (the interchange inequality).

Definition Z. 19 A valuation _ on the uncertainty set Q of a

plant P is a blind valuation if there exists a

blind controller u for P such that V(u) =

With this notion the motivation behind the definition of feedback

comes to the fore:

Theorem 2.4 If the control system (P,_) is open-loop and K

is any criterion for P then the valuation of

(P,K, 7) is blind.

Proof: Definition 2.19 is satisfied by letting u be the constant

value of the input mapping of (P, T). Q.E.D.

A first definition for a notion of adaptivity can now be given.

Definition Z,20 The valued control system (P,K,_) is strictly

adaptive if Its valuation is strictly less (in the

partial order of valuations) than any blind

valuation of (P, K).

This means that for all u in U

a) Z(mT(q), q) <_.K(u,q) V qcQ

b) (]q,_Q) K(mT{q), q) < K(u,q)

this q dependln_ of course, upon u.
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This definition is a first attempt to make precise the

following idea: a valued control system is adaptive if it uses

feedback to advantage. When, as in definition 2.20, the word

"advantage" is defined by the partial crder, the requirement so

expressed is far too strong to be met by non-trivial systems.

Indeed one has

Theorem 2.5 If the valued control syste.n (P,K,_,_) with

value mapping V is strictly adaptive, then

a) (P,T$) is a feedback control system

b) V(_,*) = inf V(F(P)), that is T*

is dominant in r'(P) andp afortiori, in any

subset F containing T$.

Proof: a)By definition 2.20 the valuation of (P, K,T*) is not blind

and by Theorem 2.4 this implies that (P,T$) is not open-loop,
m

hence ".t is feedback.

b) If °y is any controller for P then, for all q in Q

K(rn.y(q), q) >_ inf K(u,q)ueU

because m (q) belongs to U. Therefore V(T)>_ inf V(U) in the

partial order. Taking the infirnurn over _, in r'(P)

i_ v(r(P))> i_ v(u)

But the opposite inequality must hold because U is a subset of

I"(P). Hence

in_v(r(P))= I-_v(u) = _m

4
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where _m is the common minimal valuation of the control

problems (P,K, U) and (P, K, F(P) ). The claim is that

V(T*) = _m and this follows from the fact that V(T$) > inf V(I'(P))

because 75_£(P) while, by definition 2.20, V(T$ ) < inf V(U).

QED

An example of a strictly adaptive system is the following:

Consider a classical optimal control problem in which the only

uncertainty is in the values of th_ initial conditions. Suppose these

initial conditions are available as output r; i'-e beginning of the

control process. Then the designer will first find the optimum

control for each possible initial condition and design a device which

applies, as a function of the measured initial condition, the corres-

ponding optimal control. Since no other uncertainty is pre_lent, it

is immaterial whether this is done by the rapid selection of a

time function, which is then blindly applied, or by continuous

feedback methods. If at least one pair of possible initial conditions

have no common optimal control, then such a design is strictly

adaptive.

In the next section, our basic idea of adaptivity is made

precise in a weaker but far more practical sense. Instead of

defining advantage by the partial order, an evaluator is used.

With that type of definition most controllers presently used are

adaptive. The realisation of adaptivity is the reason for the use of
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feedback and thus dates back at least to Watt's regulator. The

notion that "adaptive controllers" constitute a breakthrough to

a new level of the control art appears entirely mistaken, Only

a matter of degree is involved. The strength of ' odern" control

theory is that it takes _ncertainty, constraints and nonlinearity

into account and uses the power of the computer (on-line _nd

off-line) to achieve, sometimes, an improvement in performance.

The idea of "learning" is nothing more than feedback_ in the case

where U and Y contain functions of time.

It _;oes without saying that the word "ad_ptive t' could be defined

in quite different ways, and a number of such proposals have been

made. It seems to us that the definition should

a) be independent of all structural assumptions,

b) take the measure of performance into account, and

c) be closely related to the notion of feedback.

These desiderata are taken as a guideline throughout the present

chapter.

I
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2.7 OPTIMIZATION WITH RESPECT TO EVALUATORS
AND ADAPTIVITY

When the evaluator C is applicable to the control problem

(P,K, £) with value mapping V, the corresponding supercriterion J:

F---R is defined by
e

J(_) = clv(_))

The opvalue v is then given as

v = ird .T(_)
Ye£

and the optimal controller ,_et I _ is defined by

r* - {_cr:_(_) -- v}

Elements of 1"_ are called optimal controllers.

Taking account of the partial order on 1_ we have

Theorem Z. 6 The following five cases are mutually exclusive

and cxhaus tire.

I. r • contains a dominant controller y$.

That is V(7$) <__V(7) for all 7 in F.

Z. 1"_ contains a complete subset 1_ of mi _imal

elementsj and 1-_ contains at least one pair

of non-equivalent controllers. (YI is equi-

valent to Y2 if V(_I) = V(y2) ).

3. r • is not empty, its set of minimal elements

is nct complete.

4. r • is empty and v is finite. Then for

c > 0 the set F"e -- {_e1"_.J(_) < v+c} is infinite.

,m_ .i iL _.

1966024151-047



-37 -

5. F* is empty and v = -co. Then for all

real a the set Fa= {7•_J(7) <_a} is

infinite.

Proof: A consequence of the definitions, just note that v = +co

implies that I'* is non-empty.

Discussion: In case (I) of theorem 2.6 the problem may be

considered as solved. In the other cases it is reduced to one of the

following:

Case (2): (P,K, r_*).

Case (3): (P,K,1 _) or (P,K, Fc) with Fc complete in _.

Case (4): (P,K,I'•) for some • > 0.

Case (5): (P,K, ea) for some real a.

This new problem may be d_urther reduced by the use of a new

evaluator C 2 different from C and this p_oces_ magbe repeated.•_ ,_ ! -'

C is the primary •valuator C2 the secondary •valuator, etc ....

Evaluator-based definition of adaptivity:

Definition 2.21 Let C be an evaluator applicable tc the control

problem (P, K, F) and let 7 be an element of I'.

Then the valued control system (P, K,T) is quasi-
6

adaptive with respect to 1" and C iff for all TO

in £.

(P, T0) is open-loop ._> J(y0)> - J(T). It is

adaptive with respect _o 1" and C if this holds

with strict inequality.

Note that when I" contains U then (P_K,T) is (quasi-)adaptive

iff ( V u •u) ,_(u)> (>_.)J(T)
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The idea expressed by definition 2.21 is the same as before:

the adaptive system uses feedback to advantage.

This definition call easily be extended to supercriteria which

are not derived from evaluators, for instance to the minimum

regret sul)ercriterion

-- sup q) - q))
qeQ _'teF

Theorem 2.7 Let C be an evaluator applicable to control

problem (P,K,I') and _ an element of I'.

Then if (P, K,_) is strictly adaptive, it is

quasi-adaptive wi_n respect to 1_ and C.

Proof: Let V be the value mapping of (P,K). Let _0 c F be such

that (P, _0 ) is open ]oop. Then by theorem 2.4, the valuation V(_/O )

is blind. Since (P, K,_) is strictly adaptive V(_)_ V(_0). By

definition of an evaluator J(_) = C(V(_)) <__J(_0) = C(V(_0) ). Thus

definition 2.21 is satisfied. Q.E.D.

Theorem Z_ 8 Let C be an evaluator applicable to (P, K, 1")

and _ an element of r. Then, if (P,K,_) is

adaptive with respect to r and C , the control

system (P,_) is feedback.

Proof: If (P, _) were open-loop, definition 2.21 would require

J(_) < J(_), a contradiction. Q.E.D.

Four properties: Feedback, strictly adaptive, quasi-adaptive and

adaptive have been introduced. Among them there are 12 possible

implications. Of these, exactly 4 are true, symbolized by the diagram

i
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adaptive

feedback /"I'I _"_quasi- adaptive

strictly adaptive _/¢

2.8 GAP REDUCTION BY EXTENSION

In most cases the opvalue of a control problem is greater than

the lopvalue. The gap can be reduced by "spying" and in the control

context this means an increase in feedback possibilities due to added

sensor instrumentation and more powerful control computers. This

pro:ess will now be studied in some detail.

_efinition 2.22 The control problem (P2' K2' 1_2) with value

mapping V 2 is an extension of the problem

(Pl' Kl' FI) with value mapping V 1 if the

following two conditions are .atisfied.

1. Pl and P2 have the same uncertainty set

2. The set V I(FI) of all valuations of

(Pl' KI' rl) is a subset of V2(F2).

Thus extension simply means an ivcrease of the set of feas ble

valuations.

Defini_on2.23 Let (P1,K, FI) and (P2, K,r'2) be two control

: problem with Pl = (U'Q'YI'SI)'P2 = (U'Q'Y2'S2)

such that

(V_ler)( 3_z • rz)(Vq _c_)(Vu_U)_l(sl(u,q)) =_z(Sz(u,_)

then (i_2,K, T_2) is called a strict extension of

(Pl, K, FI).
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The definition of strict extension requires that input set)

output set and criterion be the same for the two problems. But

the definition is independent of the criterion as long as it is the

same for both problems. The condition in the definition is equiv-

alent to the requirement that every loop function feasible in

problem (P1,K,T'I) is also feasible in (Pz, K,T'2). Thus, instead

of an increase of the set of feasible valuations (def. 2.22) an

increase in the set of feasible loop functions is considered and this

might be called an increase in feedback possibilities.

Theorem 2. _ A strict extension is an extcnsion.

Proof: The first condition of Def. 2.22 is satisfied, in fact

U, Q and K are the same in both problems. Let _I be any

controller in _I" By Def. 2.23 there exists a controller "Y2 in

F Z such that (VqeQ)(VueU)_l(Sl(U)q)) = _/2(S2(u,q)). Then for

all q in Q the equations

u - _l(Sl(U, q))

u - ._z(Sz(u,q))

are identical. Thus their solutions which define the input mappings

are the same:

(VqcQ) (q)= rn (q)
rny I '72

Since K is the same in both problerns, we have

(VqcQ) K(m_l(q), q) = K(rn_2(q), q)

In terms of the v%lue ma/pings V l and V 2 this relation becomes

V('tl) = V('t z)

and we have shown that
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that is

v(rl)cv(r z)

which is the second condition of Def. 2.22. Q.E.D.

Theorem 2.10 If FIG F Z then (P, KmF 2) is a strict extension

of (P,K,F 1).

Proof: The conditions of Def. 2.23 are trivially satisfied, by

taking TZ - "y1" Q.E.D.

Theorem2.11 If (PI_K_F1) and (P2_KPF2) are uncertain

control problems and PI = (U_Qj YI P SI)J

P2 = (UDQ, Y2_$2) with

Y2 = Y1 x Ya Ya _ _

S2(u, q) = (Sl(U, q), Sa(U, q))

where S : UxQ-'_Y
a a

and i/for all TI in r 1 the controller T2:YIXYa-_U

defined by TZ(y l,ya) = _l(Yl ) belongs to F 2 then

(P2_ K, £2 ) is a strict extension of (PI' K_ FI)

Proof: The conditions of Def. 2.23 are trivially satiqfied by letting

_2 be the controller associated to TI in the statement of theorem 2. II.

. Q.E.D.

Theorem 2.10 covers the case of strict extension by addition of

controllers. Theorem 2.11 covers strict extensio:_ by addition of

sensors and controllers using these sensors. Note that the general

concept of strict extension is still appUcable If one switches to an
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entirely different set of sensors and controllers, as long as a11

loop functions remain possible.

Theorem 2.12 Let (Pz'K'T'2) be an extension of (PlJK_,1 _1).

Then the minimal valuations Cml and Cruz

satisfy

Cruz 5_ ¢ml

and if an evaluator C is completely applicable

to both problems the opvalues v 1 and v Z and

lopvalues v_, v_ satisfy the inequalities

v 2 < v 1 and v_ <_ v_

Proof: Let V 1 and V 2 be "_he value n_al -ings of the two problems.

Then VI(£1) C Vz(rZ) by definition of extension.

Hence Cml = inf _/I(FI) > inf VZ(rz) = Cruz " By the order-

preserving property of evaluators

v_ - c(,I,ml) ! c(_,mz)= v_

and

v I = tnf c(¢)>_ inf c(¢)=v z
¢ _v j (r'l) ¢cVz(rz) o.E.O.

Theorem 2, 13 Lf_t (P_K=F) be a control problem with input set

(i. e. _ se*. of blind controUers) U and value

mapping V. Assume V(U) C V(V)_ i.e. _ every

blind valuation is feasible. Then

(a) (P_ K0 I') is an extension of (P_ Kp U)

(b) (P, K, i.,) has the same minimal valuation

as (P, K, U)
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(c) If evaluator C is completely applicable

to (P,K,r') with opvalue v and lopvalue v I

:hen C is completely applicable to (P,K,U)

with opvalue v ° and lopvalue V'o which

satisfy

V t = V t< V < V
O -- -- O

Proof: (a) follows from V(U} c V(I') by definition Z. ZZ.

(b) let _bm and _mo be the minimal valuations of (P,K,F') and

(P, K, t_ ; then by theorem Z. IZ

_m <-_mo

On the other hand, for all q in the uncertainty set Q

_bm(q} = inf K(mT(q), q)
7eF

where m is the input mapping of (P, 7). Define
7

Mr(q) = (my(qleU :')'C 1" }

then

_bm(q) = irLf K(u,¢_) >_ inf K(u, q) = _bmo(q )
u eMFlq) ueU

because Ml_(q ) is a subset of the input set U. Thus

_m >-_mo

and since the opposite inequality was previously shown

_bm = #mo

(c) Since V(U}c V(I') and (bm--_bmo any C completely

applicabie to (P, K, I'} is completely applicable to (P, K, U}.

l
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, follows from _m = _moV w -_ V O

v m< v by the interchange inequality I. lZ

v _< v ° by theorerrl 2. 12.

Q.E.D.

Theorem Z. 14 Let (Pi'KiPFi) for i = l,...p n be control

problems with input sets UiP value mappings "_ri

and a common uncertain*y set Q. Assume that

(PI PKI, FI) is an extension of (Pn' Kn' Un) and

that for i = Ip..., n-I (Pi+lPKi+l,ri+l) is an

extension of (Pi' KiP Fi)" Then

(a) The minimal valuations _mi of (Pi' KiP Fi)i=l' " " "' n

and _mo of (Pn' Kn' Un) are all the same.

(b) If evaluator C is complel.ely applicable to

(Pnp KnP In) then it is completely applicable to

(PnPKnPUn) and to (PiPKiPFi) for i= l,...,n.

be the opvalue and lopvalue(c) Let rip vai and Vo, v °

of (Pip Ki, Fi) and (Pn'Kn' Un) | respectively,

they satisfy

v' = v_ =. =v'<v <v < <v <vo "" n- n- n-I ""- 1- o

Proof: (a) It is clear from definition 2.22, that extension is a

transitive relation. Consequently (Pn P Kn, Fn) is an extension of

(Pi PKiP Fi) which in turn is an extension of (Pn' Kn' Un)" Then by

theorem 2.12

>- > 'mn

1966024151-055



-45 -

while by theorem 2.13 _mo = _brnn which implies that all minimal

valuations are the same_ (b) is an immediate consequence of the

definition of extension and of (a)i (c): the equalities follow from

(a)_ v' < v from the interchange inequality I 12_ the other in-n_ n "

equslities from theorem 2. 12. Q.E.D.

Theore m 2.15_ Let (Piw K, 1-i) f_r i = l, . .., n be control problems

with common criterion K, input set U and un-

certainty set Q. Assume that (PI' K, 1-i) is a

strict extension of (PI'K'U) and that for i = I,...,

n-I (Pi+l,K, 1-i+l) is a strict extension of (Pi, K, _'i)-

Then the claims of theorem 2.14 hold with

(PI' K, U) in the role of (Pn' Kn'Un)-

Proof: By theorem Z. 9 a strict extension is an extension. The set

of valuations of (PI'K'U) is the same as that of (Pn' K,U) since K

is the same and the difference in output set and system function

between P1 and Pn is immaterial for blind controllers. Therefore,

the assumptions of theorem 2.14 are fulfilled and the conclusion

follows. G.E.D.

Theorem 2.15 is the most important in practice. Its implication

may be described as follows. We start with an input set, an uncertainty

set, a criterion and an evaluator. We determine the opvalue v ° and

lopvalue v' for the set of all blind controUers. This amounts toO

solving an uncertain open-loop optimization problem. Then for any

strict extension to which the evaluator is complete'_y applicable, i.e.,

for any incre. _ Je of feedback possibilities, the new opvalue v will

satisfy
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v e <V'_V
o_ _ 0

There are two cases:

= v' no improvement of the opvaluo is possible(a) When v ° o

regardless of the sensors used. If a blind controller u* yields

v ° it belongs to the set F * of optimal controllers of any strict

extension. This does not preclude that F* may contain controllers

7* preferable to u* under the partial order, and in fact such is

often the case. The control system using 7" will be quasi-adaptive

(as is the one using uS); it may be strictly adaptive but it can not be

adaptive.

> v' then v' places a bound on the improvement(b) When v ° o o

possible by the use of adaptive systems. To obtain the full improvement

(precisely or within _) it is not necessary that e,'ery possible loop

function T(S(u, q)) be realizable (and the corresponding valuation in

the evaluators domain) which usually would violate causality. In

some cases a realizable strict extension will yield full improvement

while in others the bound for realizable strict extensions will lie

between v' and v
O O"

In any event, if we have found a "y* in some strict extension for

which v -- v' = v' th_n we can be c_rtain that no improvement of theo

opvalue can result from _urther extension, though an improvement

with .'espect to the partial order (or sonde secondary evaluator) is

still possible.

Our final conclusion is that the investigation of ol_n loop systems

can provide useful information about the possibiliHes of adapt_,-,_ systems,
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provided a supercriterion based on an evaluator is used.

2.9 CONSTRAINTS

It may be required that some variables related to the control

system satisfy given constraints. All system variables a,e functions

of u and q. Consider the set o_ all pair,_ (u,q) for v, hich the

constraints are satisfied. It is a subset of the cartesian produ¢:t

U x Q and will be called the constraint set.

Optimization of uncertain systems under constraints can be

carried out in several ways, such as

(a) The constraints are replaced by a penalty for violation,

included in the criterion K. In principle, this can be done by lettinq

K(u, q) = + co _,henever the constra, nts are violated. In practice, a

smoother real-valued penalty would be used for computati<nal

convenience, which implies that the constraints may be violatea.

H, in fact, violation must be prevented at all costs, the smooth

penalty function would be based on an artificial constraint set, a

proper subset of the actual constraint set. Once a controller _,

has been selected with the help of such a penalty function, a check

is made to determine if the use of 7 can lead to violation of the

actual constraints. If this is the case 7 is rejected.

(b) Consider the subset Fcs t of F consisting of all controlle-s

7 for which no vio)ation can occur, i.e., for which (my(q), q) belongs

to the constraint set for all q. If rcst is empty the problem has no

solution. Otherwise, repi_-,:e F by r'cs t to obtain a new control

problem to which the usual methods apply.
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(c) If a probability measure on Q is given, let Fcs t be the

set of all T in F for which the set of qts for which (m,(q),q) lies

outside the constraint set has zero measure. Then optimize as

usual over these controllers. The constraints wiU be satisfied

with probability I.

The above approaches are mentioned here only to point out

the principles involved. In cornputational algorithms the determination

of the constrained optimum would be carried out directly, using,

for instance, Lagrange multipliers. The predetermination of F'cs t

is too difficult, in general, unless the constraints bear on u alone.

Z. 10 FILTERING PROBLEMS

Filtering problems may be viewed as uncertain control problems.

Let Qs be the set of signals and Qn the set of perturbations (noise).

Then the uncertainty set Q is the cartesian product Qs x Qn or a

subset thereof. Its elements are thus pairs q = (qs' qn )" The filter _,

is to produce an estimate u of some given function of the signal,

selected among a set U of possible estimates. The filter receives

the corrupted signal y = S(qs, qn ).

Since the system function S is independent of u the plant is

a filter plant. The criterion K will depend on the quality of the

estimate, hence on qs and u, and may also depend on qn"

2.11 IDENTIFICATION PROBLEMS

For each fixed element q of O the plant may be considered

determinate. The uncertainty of q is then viewed as an uncertainty
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among a set of determinate plants, indexed by q from Q.

Identification has the objective to estimate which plant is in fact

realized, that is to estimate q. More gener:.lly, one may wish

to estimate a function of q_ that is, characteristics of the plant.

As opposed to filtering problems, identification problems arise in

a context where the possibility exists to apply signals to physical

actuators. This is done in order to force the plant to reveal some

of its characteristics. The controller "y , now called "identifier",

receives signal y from the sensors and produces u = (ui, Ue)

where u i is the input to the physical actuators and u e the estimate

of plant characteristics. The system function is independent of

Ue, that is y = S(u i, q). The criterion K will include the assessment

of the quality of the estimate, a function of q and Ue, but, in addition,

it will take into account the cost of operating the vlant, dependent on

u. and q. Hence K will depend on all variables.z

Note that the identification problem is a special case of the

uncertain control problem. In the general uncertain control problem

there is no separation of _, into an estimator and a controller in some

more restricted sense. The problem is simply to select a function T

from a set y of functions so as to minimize the supercriterion J(7),

and if several minima exist, to select one which is minimal under

the partial order and secondary criteria. This procedure, carried %

out exactly or "within e 'v, subsumes all other considerations.
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Z. lZ INFORMATION

The notion of information can be defined in the framework of

control. Consider the strict extension of a control problem resulting

£rcm the addition of sensors. The information furnished by the

additional sensors can be measured by the decrease in opvalue

resulting from the extension, that is by the saving (in terms of utility)

which the information makes possible. This type of definition of a

measure of information was suggested, in the control context, by

Bellman and Dreyfus. It differs from Shannon's definition in that

the emphasis is on the use made of the information rather than on

its transmission.

Z. 13 SOURCES

Most authors who have considered the control of uncertain systems

do not explicitlydistinguish those concepts which are independent of the

notion of time. Therefore, the sources mentioned here can not be

sharply separated from those listed in Chapter ill.

We know of no serious attempt to give a precise definition of the

concept of "feedback". This is astonishing, since a great number of

definitions of "adaptive" have been suggested, and it is to be expected

that the two concepts are strongly related. Among the proposals that

have been made, the views of Zadeh [ 65] should be of interest to those

persons whose feelings on the subject differ from ours.

In very recent times the view that controller design is just a

special case of decision making has gained acceptance but the pro-

gress towards this realization was slow. The link bet%een the sta-

tistical decision theorist and the control engineer was provided by the
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engineers concerned with filtering problems, frorr. Zadeh [ 63] to

Middleton [41]. This had to be so, because, unlike the control

engineer, the filter designer could never ignore the presence of uri-

c e rta inty.

Uncertainty entered control engineering by the stochastic door,

with James, Nichols and Philips [ 30]. This led to a vast develop-

ment for which we refer to the review paper of Kushner [ 35] .

Feldbaum [ 17], [ 18] was arvong the first to point out clearly

that the "dual" problems of identification and actuation of an uncertain

plant had to be considered as one single problem. He also stated that

the worst case (minimax) approach would be a most interesting alter-

native to the use of expectations, from an engineering point-of-view.

Other workers [ 51] made the same remark, but also pursued the

stochastic approach, mainly on the ground that the mathematical dif-

ficulties of minimax design were forbidding. This opinion may have

to be revised, now that the full intricacies of stochastic control theory

have come to light.

Macko [40] made the point that a design optimal under expectation

will usually not be dominant (a fortiori, not strictly adaptive). Thus,

when dominant designs do not exist, a decision problem does exist.

Sworder and Aoki [ 53] discuss the relations between control and

decision theory and Sworder [54] applies Waldts procedure to discrete-

time problems.

The minimax approach proper (without ra_ldorr.ization) has been

mostly considered from the point-of-view of game theory and with the

a_sumption (not always verified) that a pure value exists, that is, that
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the gap is zero. This has been done from the point-of-view of filter-

ing oy Johansen [ 31], of sensitivity by Dorato and Kestenbaum [ 12]

and of genuine conflicts of interest in the theory differential games

founded by Isaacs [ 28] .

The preliminary step of computing the worst case for a given

design has been considered by Howard and Rekasius [ Z7] and, in a

sensitivity context, by Bellanger [4] .

The important work of Warga [ 60] is the only one known to us

which considers a minimax control problem without the zero-gap

a s sumption.

The idea of measuring information by the gain in utility it can

produce is given in Bellman and Dreyfus [ 7], Chapter VIII.
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CHAPTER III

THE TIME FACTOR

3. I HEURISTIC INTRODUCTION

Most control systems of interest evolve in time. The inputs

u and outputs y are time-functions. An input u may also include

initial actions : (e. g., the selection of initial conditions and design

parameters) as well as final actions (e.g. the selection of the esti-

mate in an identification problem}. Such "once only" actions may

be included in a time function description since the sets in which

time functions take their values may be different ,_t different times.

The main impact of the presence of the time variable results

from causality. For each q in Q the system function S must be

a non-predictive mapping of the time functions in U into the time

functions in Y. Also the set r' of controllers can only contain non-

predictive mappings T of Y into U.

Algorithms for optimization may take advantage of causa_ityl

this is known as dynamic programming. To apply the ideas of

dynamic programming the notion of state is introduced. In the case

of uncertain systems different types of states can be defined. All

these definitions rely on causality, the basic idea being the following:

The state is a summary of the informal'ion available to some

observer at some time, adequate for some future purposes.

Various purposes and various observers having access to

different kinds of information may be considered, leading in e,._h

-53-
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case to a different definition of a state.

The maximal information that the controller can have at a

given time consists of:

1. all t_.te a-priori informa_on that was available to the

desig_er.

Z. the current value of the time var:able.

3. the restriction of the time functions u and y to past

and present times

4. the options that are still open for the choice of control

in the future.

A controller may only possess in fact part of the maximal information,

because of a limited ability to recall or use past data and because an

accurate clock may not be available.

From the point of view of the controller the consideration of

the uncertainty q as a time function is unnecessary. At any time t

the available information leads to the assertion that q belongs to a

subset of Q. Consideration of such subsets is the only meaningfut

way of describing the time e.olution of the uncertainty for an

observer located in the controller. As a mathematical device,

useful for the deve].opment of optimization algorithmss one may

consider a superobserver who has access to a great deal more

information than the controller. For such an observer the state

need not be an external function on the plant (in the sense of def. 2.8

of Chapter If), it can be dependent on the actual value of q. For

such an observer it is meaningful to consider q as a function of
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tittle. For instance in a differential equation description

x(t) = f(x(t), u(t), q(t), t)

y(t) = g(x(t), u(t), q(t), t)

x(t) would be the state for such a superobserver, but not in general

for an observer located in the controller.

Another basic question for the application of dynamic pro-

gramming is the following: To what extent does the selection of

the earlier values of the control u(t) restrict the freedom in the

choice of later values ? The most desirable situation is that there be

no such restriction. When there is a restriction it can be eliminated

by a reformulation of the problem. As an examp;e consider the

case where u is a sequence Ul, ..., Un cf real numbers subject

n

to u. < E. Then one can reformulate the problem as one in
1

i=l

which the input is a sequence of real numbers e 1, ..., 0 n

independently restricted by I 0il _ 1, and use the substitution

i-I

j=l

When optimization is carried out by dynamic programming the

minimization of the supercriterion J(_) is attempted, where J is

defined for the entirp control process. In doing this a sequence of

subprocesses are optimized, where the subprocesses take place over

a subinterval of time and are restricted by the information which

!

1
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has become available to the controller. Control policies which

are not o_'timal for the subprocess may still lead to a minimization

of J(7) for the whole process, and this possibility is especially

often encountered when using the guaranteed performance evaluator.

Indeed if at mid-time the controller has obtained information

indicating that q lies in a particularly favorable subset then any

control policy may be followed from that point on for which the

value of K will not exceed the opvalue of the problem. There

may be many such policies, even all possible policies. In dynamic

programming, optimization for the subprocess is carried out using

a conditional evaluator (for guaranteed performance: the suprernum

over the subset of Q). While doing so will not reduce the value

of J for the whole process, the effect is to pick out of the optimal

controller set r $ elements which are preferable under the partial

order. This is extremely valuable, as has been pointed out before,

because an improvement under the partial order is an improvement

under any secondary rules of choice one might consider in addition

to J.

Many of the questions arising in connection with time have not

as yet been resolved in sufficient generality. In the present chapter

we only discuss some of them at greater length and then proceed

to the simple case of discrete-time problems with the guaranteed

performance as evaluator.
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3.2 IHPERFECT RECALL

Besides the causality condition, the set F of possible

controllers may be limited by many practical considerations. One

limitation arises when the controllers do not dispose of the maximal

information _bout past events, that is, have imperfect recall.

Perfect recall means that any information on which the

selection of U(tl) can be based can also be used to determine

u(tz) whenever t 2 > t I.

The simplest case is that of a single control station. All

sensors and actuators have their signal-level terminals in _ single

location where the control computer (or operator) will be installed.

In that situation imperfect recall would result from the timltations

on memory and processing capacity of the _ornputer (operator).

Such a limitation is hard to assess becallse a control program ?

can be implemented by retair_ing only tho.s_ reassures of the past

data which are know1, to be sufficievt te define the future actions

under any circumstances. In this way the me=,or 7 requireme_ts

may sometimes b_: considerably reduced At the expense of some

additional processing (redaction) of the data as it is received. Such

is the case, for instance, for the _'iener-Kalman-Bucy controller.

In general it is therefore worthwhile to find a representation

of the state of knowledge of the controller which is sufficient for

purposes of optimizatim_ and provides an economy in data manipu-

lation, both Ln the calculations to find optimal controllers and in

their irnplementat_on. For the case of expected p_rforrnance this

s
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question is known as the search for sufficient statistics and has

received attention recently in the control context.

In any event, the memory and processing requirements are

so difficult to express as manipulatable functions of _ that this

type of restriction on imple_._entation must be ignored in practice,

at least in a first attack on the problem.

A far more basic limitation on the ability to recall past data

arises _'hen control is effected from several separate locations.

For instance _he control of a space mission :_ay involve sensing

and actuation from several stations, widely separated and in

relative motion. The situation which thus arises is well known in

game theory_ where the crucial i_rlp_-tance of the information pattern

is fully recognized. In game theory, bridge is a two player game

in which each "l_layer" consists of two partners (control stations)

which do not sense the same information (each senses only his

handjnot his partnerts). In the control case a computer, or a

person able to follow a pre-arranged programD is available at each

station. The design task consists in the selection of programs for

all stations. Because the stations do not sense equivalent data

(if only because of time delays) not every non-predictive function

from the combined sensor outputs to the combined actuator inputs

is realizable. Indeed such a function would make the actuation at

one station depend on sensing at another.
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To improve this situation, a communications system between

the control stations will have been provided, but noise and time-

delays limit its performance.

If there are n stations, station i will apply signal u.. tott

its actuators and signals uij(J = 1,..., i-l, i �€�H�...,n) to the

inputs to the channels towards other stations_ it will receive
)

signal Yii from its sensors and signals Yij(j=l , ..., i-l, i ,n)

from the channel outputs.

Now consider the communication channels as part of the plant.

One may always do so as a matter of convenience and one may have

to, because plant and communications system may not be independent

The ability of a spacecraft to communicate depends on its trajectory

which may be precisely what is being controlled. Note also that

sensing and actuation will themselves involve communication channels.

From this point of view u. =1 (Uil, ..., Uin ) is the input to the plant

applied by station i and is given by _i(Yi) where _i is the

stationts computer program and Yi = (Yil' "'"' Yin ) is the plant

output sensed by the station.

For the plant the input now is u= (u 1, ..., Un) and the output

is Y = (Yl' " "' ' Yn )' related by y = S(u, q) via the system function

S (which includes the time delays) and the uncertainty q (which

includes the noise).

1-i is the set of non-predictive ?i at station i then the

whole control program _, = (_I' "" " ' _n ) to be designed may be
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chosen, in the absence of ftxrtherrestrictions, in the cartesian

product r"= rI x rz x ...x rn.

When does this constitute a restriction? From a non-

relativisticstandpoint_ one may compare r to the set r0 of

all non-predictive functions *f mapping Y into U by u = "y(y).

A restriction exists if for some u, i_j, ql _ qz the outputs
•th

S(U,ql ) and S(u,q2 ) differ in their i component but not in
.th

their j compone._t.

For relativisticvelocities the comparison set I"0 does not

existj since only the non-predictive character of the _'i is

physically defined and the times of the different stations are not

comparable.

In the sequel only the case of perfect recall will be considered.

3.3 CLOCK UNCERTAINTY

The time variable tp in terms of which the a-priori plant

description is given, is usually assumed available to the controller_

by means of a perfect clock incorporated in the control computer.

Such an assumption is eminently reasonable in the discrete-time

case where the clock reduces to a counter. In the continuous-time

case the clock must be an analog device and thus necessarily

affected by some error. It may happen that this error is not negligible

and this places an unusual type of restriction on the set l_ of

realizable controllers.
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Let the input set U consist of time functions u with range

in the set Gu and let the output set Y consist of time

functions y with range in a set Gy. Let t be a time at which

a value u(t) is to be applied to the actuators and T-the set of

all past times at which outputs have been sensed.

Assume first that a perfect clock is available. Then a non-

predictive controller T will produce u(t) as a function of the

past output time function , i.e., as a function of

{t, {(T,y(T)) : TE T-}}

In particular, a blind controller will produce u(t) as a function

of t. If the clock is not perfect, that is, if its reading is in an

uncertain relationship with t, then the clock should be considered

part of the plant and its reading part of the output data y. The

controller then has no clock at all and this restricts the possible

sets F of realizable controllers. Indeed the actuator input u(t)

must now be produced as a function of the set of all past outputs,

i.e., as a function of

{y(T) = T _ T-}

a subset of _ .
Y

In other words T maps subsets of _ (elements of its power
Y

2_y) A blind controller subject to this re-set into points in _u"

striction has not even access to an imperfect clock and can only

apply inputs constant in time.
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From the point of view of a superobserver who disposes of

a perfect clock, any mapping of 2_2y into f_ can be reduced tou

a non-predictive mapping of the set of time-functions Y into the

set of time-function U. The source of the restriction is that the

converse is false: not every non-predictive mapping of Y into

U can be generated by a mapping of 2_y into _u' as the case

of blind controllers already shows.

In the sequel it will be assumed that a perfect clock is available.

3.4 TIMED CONTROL PROBLEMS

A satisfactory general theory for timed control problems is

yet to be developed and this task appears replete with difficulties.

In the sequel, only a few preliminary steps are taken in this

direction. First the formal description of control problems,

taking time into account, is considered. Such a description is

essential to any further developments. Perfect recall and

availability of a perfect clock _ ill be assumed throughout.

Definition 3.1 A time set T is a nonempty totally ordered set.

Definition 3.2 A cu___t8 of the time-set T is a partition of T

into two complementary order-convex subsets

designated by 0" and 8+ with the elements of 0-

preceding those of e +. The set(_ of all cuts

of T is called the cut-set of T. It is totally

ordered (01 < 02 iff 0; C 82) and order-complete.
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Definition 3.3 An input ran6e function _o is a function which' U

associates a non-empty set 0Ju(t ) to every

element t of a nonempty subset T of a time
U

set T. T is called the input time set and the
U

union of the sets COu(t) for all t in Tu is

designated by _u" The same definitions are

made for output range functions and output

time sets with the subscript u replaced by y.

Definition 3,4 The maximal input set for a given input range

function cou is the set Umax(COu) of all

functions u from T into _ which satisfy.
U U

(Vt CTu) u(t) ¢¢Ou(t )

Hence it is the cartesian product of the COu(t).

A timed input set U is a nonempty subset of

Umax(Cau); its elements are called inputs.

Corresponding definitions are made for a maximal

output set Ymax(_Oy) and a timed output set Y.

Notation." For any cut 0 the restriction of u to the domain

TuN 8- is designated by u 0 and the restriction of u to the domain

TuN 8 + is designated by u_ . A restriction of u to an empty

domain is called an empty function. Since u is completely defined

by u8 and u_ we write
o

u = (u0, )

The same notation is used for outputs: y = (yS, y_ }.
/
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Definition 3.5 A timed plant P = (T, U, Q, Y, S) consists

of a time set T (with cut set_), a timed

input set U (with input time set T and rangeU

function _Ou), a non-empty uncertainty set Qt

a timed output set Y (with output time set T
Y

and range function COy) and a system function

S: U xQ--_Y satisfying (VqeQ) (VucU)

where y = S(u_q) and _ = S(u,q). (Two

empty functions are considered equal).

Every timed plant is also a plant in the sense of Chapter II and

all definitions and theorems of that chapter are applicable. A

valued timed plant is obtained when a criterion K: U x Q-_R e

is given. The criterion refers to thewhoIe history of the process_

causality does not in any way restrict its choice.

Definition 3.6 A function -y :Y --_U is non-predictive iff ( V 0 _)

(VYeY) ('g'Y eY)

where u = 3'(Y) and u = 3r(y)

The set of all non-predictive functions from Y

into U is designated by rv p.
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Note that a non-predictive function _? is not necessarily a

controller and that a controller (as defined in Chapter II) is

not necessarily non=predictive. All blind controllers are non=

predictive which shows that Fnp _ F(P) and a fortiori rnp

are nonempty.

Definition 3.7 Let P be a timed plant and 0 a cut. Then

the truncated input sets are defined by

and the truncated output sets by

+
{y_"ycYe =

Y}

Definition 3.8 For -y in 1_np define the truncation -ye of _ by

=

whenever "y(y) = u.

The truncation of _ is uniquely defined because _ is non-predictive.
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Definition 3.9 For a timed plant P= (T, U, Q, Y, S) and

a cut 8 the truncated system function S_

is defined by

$0 (us, q) = yO

whe nev e r

S(u, q) = y

The truncation of S is uniquely defined because S is non-predictlve.

Definition 3. I0 For a timed plant P, a cut 0, and an element T

of l_np , the truncated loop function L0 is

defined by

Definition 3. I I A timed controller for a plant P is a function T

from Y into U such that

I. _'e _np

Z. (V 0 _) (Vqf Q) the equation

Uo = L; (u;, q)

has exactly one solution (flxpoint) in UO. The

dependence of this solution on 0 and q is expressed

by the timed input mappirq[ m 0: Q -_U;

uo " roTe(q)
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The set of all timed controllers for _ lant P

Is designated by r'T(P )

Clearly yT(P) C: l'np N I_P), it is a proper subset in general and

contains U, i.e., all blind controllers.

Definition 3. lZ A timed ;ontrol problem (P, K, I_) consists of a

timed plant P, a criterion K and a subset 1"

of £T(P). Fo_ 7 in F the pair (P, 7) is

called a timed control system.

3.5 MARKOVIAN SETS

On the way towards definitions of states, with their property

of separating past and future, it is necessary to require that the

sets involved allow such a separation.

Definition 3.13 A subset F of 1-np is markovian iff

(v ec(_) ( v _'co) (v_' cz")
the function

T : Y --U

defined by

f(7(Y)) (t) for tE TuR 0-(y)) (t) /
"(_(y)) (t) for t E Tur} 0+

belongs to F. An input set U is markovian

if it satisfies the above definition when

considered as a set of blind controllers.
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The assumption of a markovian input se; is important even in

the derivation of the maximum principle.

Theorem 3. l The intersection of a nonempty collection of

markovian subsets of Fnp is markovian.

Proof: For arbitrary fixed 0, if 7 and _ belong to the inter-

section they belong to each nf the sets, since each set is markovian

(see Def. 3.13) belongs to each of the sets_ )-ence to their

intersection. Q.E.D.

Theorem 3.2 If U is markovian Fnp is markovian.

Proof- Consider 7, 7 in ]-'rip at_d a cut 0. Let 7 be coustructed

as in Def. 3. 13. It must be show_1 that 7 is non-predictive.

Let 0' be an arbitrar 7 cut. For 0' <. 0 u0, = _, iY_,)

because 7 is non-predictive. For 0' > 0 u;t is ¢_v.posed of

U0 = 7e 'Y0), which is independent of y_ and afor_Jor_ of y_,

and of the restriction of ii to 0 œ�0I" [1 T on wh_ _: _h)_ain it
U

equals _0, (y0,)which is _|so independent of y_,. Hence

is non-predictive. Q.E.D.

Theorem 3.3 Umax(_u) is always markovial_.

Proof: The condition (V t• Tu) u(t) • _u(t) places a restriction

on u independently at every t in T u. Since it is the only restriction

Umax(COn) is markovi_n. Q.E.D.
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3.6 VARIABLE END TIME

In an uncertain control system the time at which a certai_

event occurs may be dependent on the uncertainty q as well

as on the input u applied. If this time is not an external

function (Def, Z. 8) then the controller is unable to determine

its exact value. Even if it is an external funct:on the exact value

may on, y become known to the controller at some other time

which can also be uncertain but is necessarily an external function.

The most important uncertain event is the termination of

the process. The control process is considered to be terminated

when further inputs have no more influence on the value of the

criterion K. The controller may bp unable to determine whether

the process has terminated and 7 is to be chosen taking account

of this difficulty. While this problem is automatically included

in the general description of the control problem as develop_:d

so far, it is useful to consider the prope_-ties of term!hal time

more closely.

Given u and q the corresponding final cut 8f(u,q) is defined

as the infinium, in the complete lattice _) _ of all cuts 8 which

satisfy

(VueU) "us = u_ =_K(u,q) " K(_,,_j

Given 7 and q the final cut 0f(7,q) is defined as 0_m,(q), q).

Given 7 only (including the case of blind controller_ u) the late,t

final cut is defined as
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0t(7 ) = sup 0f (_y, q)
qcQ

and the earliest final cut as

0 e (,,,,) = inf e_-y, q)
qeQ

When, for all _, in 1_. 0e(T) = O! (T) the terminal time is

know_ n, though variable. It is fixed if in addition it is independent

of 7.

In any case the designer can determine Oft= sup Oi('y).
Te£

The problem data is then reduced to the consideration of U0f ! , Yof I

3.7 OUTLINE OF FURTHER DEVELOPMENTS

The development of the general theory of timed control

problems will not be pursued further here. Nevertheless an outline

of the application of dynamic programming can be given heuristically.

Consider a timed control problem (P, K, T') with 1_ markovianD

and an evaluator C. Let 8 be a cut and assume that on 8" a

controller with truncation T8 was used. As a result some

truncated output y8 was observed. Assuming perfect recall

and a perfect clock, the state of knowledge of the controller consists of

I. all a priori information, including the evaluator and 1".

Z. the cut 0

3. thepair ,(0) . (u"e , Y'e)"
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Let_0--{q:S_(u_.ql- Y_}.,3ecauser ism_rkovian
it is still possible, for fixed TO , to switch to any T in F

Over 0 +. To each such choice of 3, corresponds a valuation

on QO" Using a conditional evaluator, a number (supercriterion)

can be obtained for each T and the problem of its minimization

is a timed control problem over 0+. An optimal controller

and the opvalue have to be ,ietermined. This is done for every

0"(0) which can result for any q and any selection of T_

In consequence a payoff function W(T _ , q) is defined by

the corresponding opvalue of the conditional evaluator.

The choice of an optimal TO is thereby reduced to another

control problem on 0- for which an evaluator is required.

The appropriate evaluator might be called a truncated evaluator.

Since each of the control problems that arise in this fashion

can be cut in turn, a recul'sive (i. e., dynamic programming)

type of algorithm is obtained.

The factorization of C into a conditional and a truncated

evaluator is trivial for the expected performance and for the

guaranteed performance.

An expression for this factorization, valid for arbitrary

evalu_ors, does not appear to be available, nor is it known

whether C itself can always serve as truncated evaluator.
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Detailed analysis of the case of expected performance has

been actively pursued for some time. Far less is known at

present for the case of guaranteed performance. The rest of

the present work is devoted almost exclusively to this case:

the 'Wminimax" control of uncertain systems.

3.8 A DISCRETE TIME CASE

A specific type of timed control problem will now be

considered. The optimization procedure for guaranteed per-

forrnance by dynamic programming will then be described.

Let the succession of events be the following:

Application of input u I c _u (1)

Observation of output Yl _Wy(1)

Application of input uZ C_u(2 )

_o_oo ....

Observation of output Yn- 1 C_y (he 1)

Application of input u n _u (n)

The integer n is fixed. According to the well-established but

rather unfortunate convention, the same index i is used for the

input u i and the later output Yi" Consequently i by itself is

not the time. The time set T is the union of T and T which
u y

interlace. The n elements of T and the n-l elements of T
u y

are labeled by overlapping sets of integers despite the fact that

T u and Ty are disjoint. Accordingly

1966024151-084



-73.

n

U = 71" U_u(i)
i=l

n-I

Y = T_I _,y(i)
i=l

u = (Ul,..., Un)

Y " (YI' "'" Yn-I )

Consider cuts 80' 81, ..., 8n_ 1 where cut 8 i is located before

the application of ui+ 1 but after the observation of Yi" Hence /)0

is the initial cut (80 is empty).

The notations will be

i

TTui = (u l, ..., ui) _ = _u(j)
j=l

i

Yi = (YI' "'" Yi )eY; = -_ Wy(j)
j=l

Let Q be the uncertainty set.

The system function S is defined by (SI,..._Sn_I) , that is,

for i= 1, ..., n-I

Si :U _ x (2---_y(i)

Yi = Si(ul' "'" ui' q) = Si(ui° q)

The criterion K: U x (2 --R
e

has values K(u, q) = K(Ul,...j Untoq)

= K(Un-I ' Un' q)
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The set 1- of controllers will be the set 1-np which is identical

to 1-T(P) for this type of plant. Controllers T are defined by

(T1,...tTn) such thatfor i = l,...,n

J

")'i: Yi- 1 "Wu(i)

ui = "Yi(yl'''''yi-1) = Tt(Y;-I )

Note that Y0 consists of just one element: an empty function,

so that _/I = Ule_°u (I)" Let 1-i be the set of all functions Ti

n

which map Yi:l into _Ou(i ). Then 1_ = 1-np = _- 1-i.
i=l

Since the input set U = Umax(_0u) it is markovian (Theorem 3.3),

hence 1- is markovian (Theorem 3. Z). The equality of Fnp and

FT(P ) results from the fact that the solution of u = T(S(u,q)) for

given q is found by composition of a finite number of functions,

a procedure which must lead to a unique result.

Indeed this solution proceeds recursively by

u.,= i)

Yi = Si(ui ' q)

The truncated system function Si is defined for i= I, ...,n-I by
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s: :u[ x Q--Y:
1 l 1

That is Si = (SI,S2,...,Si). The knowledge of the controller

at cut 8. consists of
,

a. all a priori information

b. the position of the cut

. _ [c. the data _ri = (u i , Y i ) •U x Y."*

d. the controller (T l,.,.,Ti ) used so far.

The information in (a) is fixed by perfect recall. The information

in (b) is implicitly contained in (c). The information in (d) is

redundant for future purposes because

1. given (c) it provides no additional data about the plant

2. since F is markovian, the choice of Ti in the past

has no effect on the freedom in the choice of Ti in the

future.

For these reasons it is the information in (c) which characterizes

the state of knowledge of the controller. Note that the assumption

of a markovian set of controllers is essential to obtain this

reduction.

Note that for the initial cut @0 the state of knowledge _r0

consists of a pair of empty functions, that is, characterizes the

absence of data.
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Let 2Q be the power set (set of all subsets) of Q.

...2 Q "
Define the function Qi :U_ x Y_

_i{_ri) ^ .= Qi(ui' Yi)= {qCQ:Y; = S-x(ui 'q)}

Then _x" must belong to the subset of U-x x Y.-x defined by
_ ^

Zi = {_i CUi x Yi :Qi{_i) nonempty}

Note that _0 = { rO}and O(sO) = Q.

n-I

Let ]E = U ]_i
i=O

^
and let Q: _ ---2 Q

^ ^

be defined by Q(o) = Qi(_r)

for _ in 23..
x

Comments: I. Many systems evolving continuously in time

can be modeled by the above formalism. For instance,

the input may be a continuous-time function while the

output consists of samples delivered at a discrete set

of times, fixed in advance. Then Yi is such a sample

and Ty the set of sample times. As for u i it

consists of the portion of input function between two

consecutive samples. An overlap at one time instant

between u i and Yi is immaterial for most systems.

The case of variable, uncertain_ terminal time is

still within this framework provided the set 0fj (l Ty

is finite; the cardinality of this set determines n.
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Similarly, if the input_ are piecewise constant

with discontinuities restricted to a discrete set T
u

while the outputs are any type of continuous-time

functions, the above description can be used.

2. Two states of knowledge of the controller,

characterized by different data (u i , 7i ) may be

equivalent as far as the calculation and implementation

of optimal control is concerned. If such pairs are

considered equiv,_lent it is sufficient to know in which

equivalence class the data is located. What this

equivalence is depends on the structure of the

criterion K and on the evaluator used.

For the case of expected performance_ any

function of the observed data, such that the value

of this function determines the equivalence class

in which the data is located serves as a sufficient

statistic.

3.9 THE DYNAMIC PROGRAMMING ALGORITHM

To find the opvalue v and an optimal or e-optimal controller

T* for the problem described in the previous section, for the

guaranteed performance evaluator, the method of dynamic pro-

gramming can be used.
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The objective is to replace the calculation of

v = in/ sup W(_,, q)
_eF qcQ

by a large number of simpler problems of the same type,.

In the sequel, whenever an infimum is determined, assume

that its value is not - co (that would be too good to be true).

Select c > 0. Then there will be an element, in the set over

which the infimum is taken, for which the value does not exceed

the infimum by more than c. Any such element will be called

a minimizing element. Since the control process has a finite

number n of steps, the controller constructed in this manner

will have a guaranteed performance not exceeding the opvalue

by more than n_. In short, one may act as if all infima were

attained.

The algorithm proceeds as follows:

First Step: For every _rn.l in _n-l let

m

_n-I = (Un-l' Yn-I )

Define Dn-l: Zn-I "" Re

by Dn_ l(0"n_I) = iv.f sup K(u:_ q)
Une_Ou(n) qe6(°'n- I ) I' Un'

gn: _'n-I "eu(n)

gn(arn,l) = a minimizing un
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Second Step: For every _n-2 in ]En_ 2 let

_rn. 2 = (Un. 2 , Yn_2 )

Define Dn_ 2: ]En_ 2 --- R e

by D 2(arn.2) = inf _p D )n- Un. i e_u(n- I) qe fn.2 ) n- l(Crn" I

where Crn-l = (Un-l' Yn_l )

Un_ 1 = (u -Z' Un-l)

Yn-I= (Yn-Z'Sn-l(u,:-l'q))

and let gn-l: Zn-Z -_ c°u(n-l)

gn- l(°'n-2) = a minimizing Un_ I

Last (n th) Step: v = inf sup Dl(O'l)
ule Wu(l) qeO

where o"1 = (¢al, Sl(Ul,q) )

gl = a minimizing u I

The opvalue v has been found and an (m[-) optimal controller

is implicitly defined by the gi (i= I, ..., n). The gi are entirely

adequate for implementation. If desired, the corresponding Ti,
N

dependent solely on the outputs, can be found by recursion:
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Tl = gl

7z(yl) = gz(yi,yl)

_3(yl,yZ) = g3(_, _Z(Yl), Yl, YZ)

etc.,

The dynamic programming algorithm is especially

advantageous when all sets involved are finite.

Since the sets E i may be difficult to determine, it is worth

noting that for the execution of the algorithm, they may be replaced

by any superset, at the expense of red,indant calculations.

3. 10 SUPEROBSERVER DESCRIPTION

The problem considered in Sections 3.8 and _. 9 was stated

in the basic external description. Frequent!y an internal description

is given from the point of view of a superob_e_-vcr to whom q

appears as an input time sequence (ql _ ..., qn ). This superobserver

is assumed to be still limited by causality so that his state of

knowledge at cut 0 i includes (u_, qi ). The uncertainty set Q

is then anoth-.r input set.

Such a description leads to the same dynamic programming

algorithm if the structure of Q as a set o_ time functions is trivial,

that is if ¢_q(l) = Q and, for i > 1, Wq(i) is a singleton. When

the time structure is not trivi,tl then simplifications result,

provided that Q is a markovian input set. This means th&t for q

and q in Q and arbitrary i the sequence _ with ___Jffi qj for

j<i and _, = q, for j>i also belongs to Q.
J
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It may be necessary to reformulate a given superobserver

description to insure this property. This reformulation is

analogous to the idea of _*prewhitening" of stochastic filtering

and control problems. More specifically_ the concept of an

uncertain time function which is only known to belong to a

markovian set is analogous to the idea of white noise.

The sequence of even_:sD as viewed by the superobserverj

is the following:

system 3tarts in fixed initial "internal state*' x0_ox(0)= {x0}

application of input UlCCOu(l ) by the con_rollex

application of input qlCCOq(l) by nature

transition to internal state xle_x(l )

production of output yle_oy(l) sent to the cortroller

application of input u2_u(2 )

application of input q2_q(2)

transition to internal state x2E_x(2 )

production of output y2c_y(2)

application of input UnC_u(n)

application of input qne_q(n)

transition to internal state XnCWx(n ).

L
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The internal states x i represent the state of knowledge of the

superobserver, who disposes of an accurate clock and enjoys

perfect recall.

The same integers are used for indexing of all variables

and T may be considered
though the time sets Tx, Tu, Tq Y

disjoint.

n

The input set from the controller U = _- _u(i) and the
i-1

n

input set from nature (2 = __-V_ t0q(i) are both markovian. The
i=l

set F of possible controllers is the same markovian set F
np

as in Section 3.8 because the controller has access only to u and

y (as before) not directly to x.

Let the criterion K: U x (2 -* R be defined as a function
e

solely of x n , the final internal state, by

K(u,q) = k(Xn)

k: x(n)--- Re

This is a criterion because x n is completely determined by the

sequences u and q. The rel4tionships describing the plant consist

of an internal state transition equation

xi = fi(ui ' qi'xi-I )

fi: _u (i) XWq(i) x Wx(i-I ) --_ cox(i )

i ffi Ii ...in
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and an output equation

Yi = hi(ui'qi'xi)

hi:_u(i ) X_q(i) XCOx(i) --_ coy(i)

i = lm...mn-1

The appearance of u i as argument for h.1 corresponds to the

possibili'y of a selection by the controller among different types

of output. Since u.x also influences xi, hence Xn, hence the

value of the criterion, the selection of u. which yields a more1

useful output may also lead to a higher cost. Tl_s thxs description

includes the cost of measurement as a factor in the optimization.

It may at times be preferable for the controller to select a u.x

for which h. is independent of its last two arguments, that is,1

decline the possibility of receiving output data because this choice

will lead to a saving which is more valuable than the loss of

informatio,_ incurred.

Note that, given an external description as in Section 3.8, an

internal description of the above type can always be trivially

obtained by letting

COq(1) = Q and ¢Oq(i) = singleton for i> 1

ql = q
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Then x 0 = absence of data

and x = {u,q) = arguments of Kn

so that k - K

Also fi(ui ' qi' xi- I ) = fi(ui ' qi' U;-l' qi- I )

m

= (ui ' qi )

m

and hi(ui' qi' xi) = hi(ui' qi' ui ' q; )

o

= Si(u i , q; )

Of course, this identification produces only a formal change in

the dynamic programming algorithm.

3.1 1 ALGORITHM USING INTERNAL DESCRIPTION

Consider cuts _. for i=0,...,n-I placed just before the
1

application of inputs ui+ 1 by the controller. At cut O. a1

controller with perfect recall disposes of the data 0"i = (u;, y; )

and in general this will not enable the unique determination of x..i

the case where x. is always uniquely determined by or. will be1 1

considered later. Thus there will be a nonempty set r. : _x(i)1

of all states x. which can be reached by selecting any q in1
A

Q(0ri) , that is, compatible with the observations. Because U, F and Q

are all markovian the knowledge of r. rather than or. is already1 1

sufficient for the purpose of optimization.
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Therefore, one introduces the sets _Or(i ) where for each

i, COr(i) is a collection of subsets of _x(i) sufficiently larg_ _. to

include all r i that can occur. One may always insure thi by

taking COr(i) as the power set (collection of all subsets) of _Ox(i )

but much more restricted collections are usually sufficient when

the detailed structure of the problem is taken into account. For

example, if _x(i) is a topologicat space it may be sufficient to

consider only compact subsets; if it is also a linear space,

compact _nd convex subsets may be sufficien_ and then r. is1

characterized by its support function which can be more readily

r_anipulated.

The set r. plays a role analogous to that of the conditional1

probability distribution of x.1 given cri in the case of expected

performance.

Of course r ° = {Xo) = _x(O) and ¢Or(O) ffi {to}

To proceed to the dynamic programming algorithm note first

that r is known and that r. can be _,btained recursively from
0 1

ri- 1' ui and Yi" Let the cornpatibility functions c.1 be defined

for i=l,...,n-I by

ci: Wr(i-1 ) x_u(i ) X_y(i) --- _r(i)

ci(ri_l,U i,yi ) = {fi(ui, qi, xi_l) _ rex(i) :qle_q(i),

x. l_ri Yi qi' qi' xi- _)}I- -I' = hi(ui' fi(ui '
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Then r i = ci(ri-l'ui'Yi ) for i= l,...,n-I

Note that the compatibility functions are monotone in the sense

that A EB implies

ci(A ,ui,yi) E ci(B, ui, Yi)

Now the algorithm can be defined.

First Stein: For every rn_ 1 in _r(n-1) define

Dn-1 : _r (n'l) -" R e

D l(rn_l) = inf sup sup k(fn(Un, qn, Xn. 1 ))
n- Unt_C_u(n)qneC_q(n) Xn- Ic rn- I

and gn(rn-I ) = a minimizing un

Second Step: For every rn_ 2 in _r(n-Z) define

Dn_ z : _r(n-Z) --_ R e

= in_ sup sup D l(Cn.l(rn.z, Un-l'Yn-l) )

Dn_z(rn_z) Un-l_u (n-l) qn-let°q (n'l) Xn-Z ern-z n-

where Yn-I = hn-I (un- I' qn" I' fn- l(un- I' qn- I' xn-2) )

and gn-I : _r (n-Z) -_ _u(n'l)

gn-l(X'n-Z ) = a minimizing Un. I

. :_ M L
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Last {nth I Step: Define

v = inf sup Dl(Cl(r0, Ul, yl) )

u I e_u( 1) q I e_q( 1)

where Yl = hl(Ul'ql'fl(ul 'ql'x0) )

and let gl = a minimizing u 1

Then v is the opvalue of the problem and the gi define the

optimal controller.

If desired, the functions Ti can be recovered recursively

by

T1 = gl

Tz(y 1) = gz(cl(ro, Tl, Yl))

T3(Y I.yz ) = g3(cz(cl(ro, Tl,Yl ), Tz(Yl),Y2)

etc..,

Note that the functior_s D. are monotone set functions in the sense
I

that ACB implies Di(A ) _< D.(B).I This algorithm is of a more

complex _tructure than that of Section 3.9 and it requires

manipulation of the sets r.. Its advantage is that the functions
1

fi' hi' ci' k depend only on data at a single time index while in

Section 3.9 the functions K, _ and Qi have truncated sequences

as arguments.

The present algorithm becomes especially interesting if

simplifying features are present in the problem; these special cases

are considered in the next two sections of this chapter.
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3. IZ CASE OF INDEPENDENT OUTPUT UNCERTAINTY

Assume, for the problem described in Section 3. I0, that

for each i= l,...,n

m
x(i)x (i)

_q(i) = _q q

where _q(n) is a singleton. Then the elements qi are

pairs (qX, qi).m

Assume also that the state equation involves only qX andi
m

the output equation only q i "

x. = f"ui'qi' xi- )I x l

m

Yi = hi(ui' q i' xi)

Then we say that the output uncertainty is independent of the state

uncertainty. This case arises in particular when the h. do notx

depend on qi at all (though the h.x stillneed not be one-one with

respect to x i at fixed ui).

Simplifications of the dynamic programming algorithm are

now pos sible.

Define the reachability function Pi: Wr(i'l) x _u(i)--- a)r(i ) by

X • X X . }
Pi(ri_l,Ui) = {fi{ui,Cli , Xi_l)C_x(i).q i _eq(1),Xi_leri_l

and the measurement function m i : eu(i ) x _y(i) -_ C_r(i ) by

m m i z hi(ui, qi . }mi(u i,yl) " {xicex(i} : (3qi eeq ( }} Yi xi)
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Then the definition of the compatibility function c i reduces to

ci(ri.l,ui, Y i) = Pi(ri.l,_i) _ mi(ui, Y i)

This expression can be substituted for every appearance of c i

in Section 3. I I. Furthermore each appearance of sup can

qi ecoq(i )

be replaced by sup sup . Thus one obtains

x m m (i)qi • (i) qi •_q

a further subdivision of the total task into subtasks such as the

separate determination of Pi and m i followed by intersection

and the separate extremization over the sets _q(i) and coq(i).

Note also that the expression for Yi in the algorithm reduces to

m x xi'l ) )Yi = hi(ui' qi' fi(ui sqi'

A tremendous simplification occurs when the sets Mi(uip yi )

never contain more than one point. This case is the subject of

the following section.

3.13 CASE OF INTERNAL STATE OUTPUT

Assume, for the problem described in Section 3. I0, that for

any i and any arguments the value of the compatibility function c i

is a set of at most one point. Then for all arguments that can

actually occur the value of c. is a set of exactly one pointI

( a singleton).

This case is obtained when, in the problem of Section 3.12, the

values taken by the measurement functions m i are always singletons.

Then, without loss of generality, one may assume that the output

equation is simply

Yi = xi
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m

that is hi(ui' qi' xi) = xi

Under these assumptions the dynamic programming algorithm

is considerably simplified and requires only operations with the

functions k, f. and1 Pi"

The reachability function Pi is now reduced to

Pi :Wx(i" I) x _u(i) -_ _r(i)

Pi(xi- I'ui) = {fi(ui'qi'Xi-l) ¢_x {i) " qiC_q (i)}

x
The superscript x on qi has become redundant. The algorithm

now proceeds as follows.

First St_ep: Define Dn.l: _x(n-l) --- R e by

Dn_ l(Xn_ 1) = inf sup k(fn(Un, qn, Xn_ 1) )

Une_u (n) qne_q(n)

= inf sup k(Xn)
Une_u(n) XnCPn(Xn- 1' Un)

and gn :_x {n-l) "_ Wu(n)

by gn(Xn -1 ) = a minimizing u n

Second Step: Define Dn. 2 :_x(n-2) --- R e by

Dn_2(Xn_2) = inf sup Dn.l(fn_l(Un.l qn_l_Xn.2) )
Un- I e_u(n- 1 ) qn- I eWq(n- I )

= ird sup D )n- l(Xn - 1
Un. leWu(n- I) Xn. lCPn" l(Xn.Z_ Un_ l)
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and gn-I :_x (n-z) "" C°u(n-l)

by gn- l(Xn-2 ) = a minimizing Un- I

Last (n th) Step: Define

v = inf sup Dl(fl(Ul' ql'Xo) )

Uleeu(l) ql¢COq(I)

= inf sup Dl(Xl)
Ul_u(1) xlePl(Xo, U I)

and g I ea_u( 1 )

by g l = a minimizing u 1

Then v is the opvalue of the problem and the gi define directly

the controller functions 7i by

'yi(Yl,...,Yi_l ) = 'Yi(Xl,...,xi.1) = gi(xi.1)

3. 14 INTRODUCTION OF STRUCTURE

Thus far in Chapter I, 2 and 3 no assumptions on the structure

(linear, topological, metric, etc. ) of the sets involved has been

made. As a consequence no meaningful assumptions on the structure

of the functions involved (continuity, linearity, convexity, etc.)

could be made either.

Though it is believed that the discussion of the more fundamental

ideas should be made without the introduction of irrelevant structure

assumptions, it is nonetheless clear that further development of

the theory towards application relies entirely on such assumptions.
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Hence in the remainder of this work a very narrow class of

heavily structured problems will be considered more in detail,

This class will be described in Chapter V and is _ special case

of the class of problems discussed in Section 3.13. In Chapter V

an investigation of the reachable sets of linear differential

systems and of their support functions is presented. It establishes

a bridge between a familiar type of problerr_and the class

considered in Chapter V.

Q
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3. 15 SOURCES

The application of dynamic programming to the control of

uncertain systems evolving in discrete time was proposed in a

fundamental paper of Bellman and Kalaba [5], for expected

performance, without assumption of perfect recall.

A more detailed application of these ideas is available in

Bellman [6], Bellman and Dreyfus [7], and Dreyfus [13].

Among the important recent works on the stochastic

discrete-time case are those of Striebel [52], Astrom [1] and,

above all, Dynkin [ 14].

Most recently this subject has al_o been approached from

the point of view of mathematical programming, by Van Slyke

ano Wets [57] and Wets [61].

For the stochastic contint:ous-time case the developments

begun by Kalman and Bucy [32] and Florentin [20] have led to the

results summari--ed by Kushner [ 35].

As for the application of dynamic programrtdng to games

evolving in time (the "extensive form"), it go:s back at least to

the classical proof that finite games of perfect in.formation have

a saddle-point. For further developments see the treatment of

recursive games by Everett [16], of Markov games by Zachrisson [62]

and of differential games by Isaacs [28, 29],

For other approaches, see the references discussed at the end

of Chapters II and V.
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The requirements for sets of admissible inputs stated by

Pontryagin et al. [45], Chapter 1, imply a markovian property

of these sets.

1966024151-106



CHAPTER IV

REACHABLE SETS OF LINEAR DIFFFRENTIAL SYSTEMS

4. l INTRODUCTION

The minimax control of linear systems, in fixed time,with end

point criteria and sampled output of the state will be shown later to

reduce to a geometric minimax problem involving reac]aable sets.

Among the reachable sets of interest are the sets of states reachable

at a fixed time, under various types of constraints on inputs and initial

conditions. These sets are convex and compact for many types of

constraints and thus fullydescribed by their support functions. Even

when the sets are only compact their convex hulls are sufficientto

solve some control problems.

Once a fundamental matrix of the linear system is known, applica-

tion of the theory of moments or of the maximum principle yields the

support functions of tl,ereachable sets with littleadditional effort.

4.2 THE BASIC MAPPING

Consider the vector system (n components}:

x = A(t)x + f(t} x(t0) = _ (l}

and let T be given, to < T < co . A fundamental matrix 4D(t) is

a non-singular solution of

_(t) = A(t)_(t) (2)

Absolutely continuous solutions of Eq. 2 exist for locally integrable

A(t) and are non-singular throughout if non-singular for some t.

H _(t) is a fundamental matrix, every other fundamental matrix is

-95-

f
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of the form cYp(t)C where C is a constant non-singular n by n

matrix. The unique transition matrix is

qJ(t, T) - _(t)#-l(T)

Then Eq. I may be replaced by

T

x(T) = _(T) [_-l(t0) g + f #-l(,)f(v)d,] (3)

t o

Note that Eq. 3 makes sense when f is integrable on It o , T] and that

functions f(t) equal almost everywhere are equivalent as far as

Eq. 3 is concerned. Thus we take f to mean an equivalence class

of integrable functions. Then Eq. 3 defines a linear mapping of

pairs ( _, f) belonging to Rnx [Ll[t0, T]]n into elements x(T) of R n.

Note that for 1< p< q

LI[t0, T] D Lp[t0, T] 23 Lq[t o ,T]

so that Eq. 3 makes sense a foriori for (equivalence classes of)

functions f whose components belong to L for p > 1.
P

Let ,_) denote the linear qpace R n X[Ll[t0, T] ]n the domain of

the mapping defined by E_I. 3, Then the problem of reachable sets

at time T may be viewed as f_llows.

Given a set T in_, a "_onstraint set", find the image of 7 in

R n under Eq. 3. We will concentrate on finding the support function

of this image, i.e., the closure of its convex hull.
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4.3 SUPERPOSITION OF INDEPENDENT CONSTRAINTS

It may happen that the elements (_, f) appear as sums of

several such elements, each independently constrained. This means

that the constraint set T is the vector sum of a finite number of

sets Ti each defined independently of the others.

Then, since the mapping is linear, the image of 7 is the

vector sum of the images of the Ti and one may determine these

separately.

This is particularly convenient in terms of support functions

since the support function of a vector sum of sets is the sum of the

individual support functions.

Note in this connection that the constraints on f need not always

be independent of those on _.

4.4 DUALITY

Let us restrict our attention to the subspace,_) 2
of

' '_2 = Rnx [L2[t0_T]] n

the inner product of elements (_i,fl), (_2' f2 ) of _2 be de-Let

fined by

T

< (_l'fl)' (_2'f2)> = <_1' _2 > + / < fl (t)' f2 (t)>dt (4)

t o

_2 is a Hilbert space and may be identified with its dual.
then

The basic mapping may be written

x = f)
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and L* will denote the adjoin ot L, i.e., for x in R n

< x, L(_,f)> = < L x, (_,f)>

from which

- 1(to) ¢ ,L x = (4)' (T)x, 4_'-l(t)4_'(T)x) (5)

Let _ be a constraint set in _Z" Its support function is
defined for

F_ A

(g, f) in z by
AA A A

G(g,f) = Sup < (g,f), (g,f)>
(g,

The support function of the corresponding reachable set is

H(p) = Sup < p,L(_,f)>

= Sup < L'p, (g,f)>
(g,

= G(U*p) (6)

Thus the support function of the reachable set follows by substitution

from the support function of the constraint set.

4.5 HARD CONSTRAINTS AND THE MAXIMUM PRINCIPLE

By "hard constraints" is meant a constraint set -},of the form

_' = {(0,4p(u,t)): u(t)ega, e in [t0,T] }

where G is a compact set in R r

u are measurable functions from [to, T] _nto R r

is a continuous function from Rrx[t0 , T] into R n

By a theorem of Neustadt the corresponding reachable set is compact

and convex.
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Thus for any n-vector q the maximum of < q, x(T)> subject

to the constraint T is attained for some time function u with corre-

spcmding function x and by the maximum principle, a corresponding

function 'p satisfying

p(t) = -A'(t)p(t) p(T) = q
{7)

x(t) = A(t)x(t) + ,(u(t), t) x(t0) = 0

The hamiltonian

S -- < p(t), A(t)x(t)> + < p(t), ,(u(t), t)>

has the m_tximum value

Hma x = < p(t), A(t)x(t)> + max < p(t), ¢(a_, t)>
_¢fZ

= < p(t), A(t)x(t)> + o'(p(t), t) (8)

where 0r(p, t) is the support function of the set _b(_ t) in R n.

d
then -_ <p(t),x(t)> = o-(p(t),t) (9)

and, since X(to) = 0
t

< p(t),x(t)> = [ 0"(p(T),T)dT

t o

at time T

<p(T).x(T)> = <q,x(T)> = max <q,x>
xcT

= h(q, T)

the support function of the reachable set at time T, evaluated at

argument q.

If 4, is a fundamental matrix for A, integration of the adjoint

equations gives
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-1
p(t) = _' (t)_'(T)q (10)

Thus the final result is

T

h(q, T) = / ¢rl_"l(t)_'(T)q,t)dt 111)

t o

which completely describes the reachable set since it is known to be

compact and convex.

In the case where _b(u_ t) = B(t)u with an n by r matrix B(t)

let a_(q) be the support function in R r of ne set f_ to which u(t)

is constrained. Then the suppt.rt function er(q,t_ of the set B(t)_2

is, by Eq. 6

_r(q, t) = ¢_(B'(t)q)

and Eq. 1 1 takes the form

T

h(q, T) = f _(B'(t)4,'-l(t)_'(T)q)dt (12)

t o

If G is defined by N(u)<_p where N is a norm in R r, let N*(.)

designate the dual norm of norm N. Then

e(q) = pN*(q)

andEq. 12 becomes

T

h(q,T) = p f N*(B'(t)@'l(t)_'(T)q)dt (13)

t o

If A and B are independent of t Eq. 12 becomes
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h(q,T) = f _B'eA'(T-t)q)dt (14)
to

Finally if r = 1 and G is defined by l ul<__p

T

h(q, T) = p f [b'eA'(T-t)qldt (15)
t o

4.6 THE DUAL HAMILTOr-JACOBI EQUATION

Taking formula 1 1 as a starting point, note that along a line in

(q_ T) space, that is, a solution of the adJoint equations

_T = -A'(T)q (16)

h has a total derivati_

-__ = _r(q,T) (I?)

This suggests that we are faced with the characteristics of a partial

differential equation.

Indeedj provided the derivatives exist_ differentiation of Eq. I I

yields

ahlq, T) (18)
aT = ar(q, T) + q'A(T) ah(q, T)Bq

Sincep by Eq. 8p

Hrnax(P, x, t) = ar(p, t) + p'A(t)x (19)

we may write Eq. ]8 as

8h(p, t) = Hmax(p ' ah(p, t) t) (20)St Bp '
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which is the dual of the Hamilton-Jacobi equation

8J(x, t) - H (BJ(x, t)
at = max 8x , x,t) (21)

which governs the value function J.

While Eq. ZO is integrated forward in time, from the support

iunction of the initial states, Eq. Z1 is to be integrated backward in

time from the terminal cost function.

Just as Eq. 2 1 may be obtained as the limiting form of the

Bellman equation

J(x, t - At) = max J(x+(A(t)x+_(u, t)_ t, t) (22)

equation 20 can be obtained from the dual Bellman equation

h(p, t+A t) = h(p+A t_.'(t}p, t} + max p'_(u, t_ t (23)

Notice that the duality between Eq. 20 and Z1 is analogous to the

duality between the backward and forward Kolmogorov equations for

s tc_chastic systems.

4.7 HARD CONSTRAINTS AND DUALITY

In the Hilbert space _Z consider the subspace ._ = 0 which is

itself a Hilbert space with inner product

T

< f' f> = I < f(t}, f(t}> dt

t o

Since *? is a set in this subspace, its supF_rt function evaluated
A

at an element f is given by

h

1966024151-114



-103-

A

G(f) = Sup <f,f>
feT

T

/ ^= Sup < f(t), f(t)> dt

fe_' to

T

f ^= Sup < f(t), _(u(t), t)> dt
u(. )

to

T
A

<_ f max < f(t),d_(u, t)> dt
d ue f2

t 0

T
A

= f _(f(t), t) dt (24)

t o

the maximum integrand at any time t is attained for some u(t)

since _ is compact. Either the function u(t) defined in this way is

measurable or it can be approximated by a measurable u(t) with

range in G so that Eq. 24 exceeds G(f) by less than e. Thus equality

bolas and

T

G(f) = f cr(f(t), t) dt (Z5)

t o

and by the substitution of Eq. 6 one obtains the support function of the

reachable states. The adjc_._t operator I_ is multiplication by

¢l_'l(t) _I_(T). Therefore one obtains Eq. II in yet avcther way, by

replacement of f(t) by
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-1
L*p = 4' (t)_'(T)p

4.8 INITIAL CONDI£ION CONSTRAINTS

In case _ = {(_,0): _e_0} where _0 is a compact, convex

set in R n with support function h0(P) , one may apply directly the

duality form_'la, Eq. 6_ to obtain

h(p, T) " ho(_"" ]{to)_'lTlP ) (_6)

When ir_tial condition constraints are cornbined with independent

hard constraints, i.e ,

superpo_ition aFplies and the addition of the support functions for

the separate constraints yields

T

h(p, T) = h0( _"l(t0)_'('I')p ) + / _r(_"l(t)O'(T)p, t)dt

to

(zT)

When the derivative_ exist, this rn_y be viewed as the solution of

the dual Hamilton-Jacobi equation from the initial condition

b{p, tO} = h0(P).

4.9 ENERGY CONSTRAINTS

energy cor, stratntp is mean +. the subset of _2By all

= {(B0_. Bltlultll:l_'_Jz �/u'ltlQltlultldt< pZ } (aS)
t o

where 0 0 is _ constant symmetric posttive definite r' by r'
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matrix, B 0 a con.qtant n by r I matrix_ B(t) an n by r matrix,

Q(t) a symmetric r by r matrix positive definite a.e. for t in

[to, T], _ has r w, u has r components and p> 0 is _ constant.

Assume the elements of B and Q are in Leo [t0, T],

Since positive definite matrices have positive 0efinite square

rcots, one 1,_ay effect the change of variables

I_ = QO l/2v

(zg)u(t)'-Q(t)-l/Zv(t)

Then -) maybe written

T

: ((BoOo fv, B(t)Q(t)'l/2v(t)):v'v :r v'(t}v(t)dt'_ p2 }

t o

(30)

i.e., (v,v) is constrained to a sphere of radius p about the origin

of a Hilb,'"t space.

The mapping of this sphere into reachable states is described

by

x(T) = O(T)_" l(t0)BoQ;l/Zv

T

+ / _(T)_)'l(t)B(t)Q'l/Z(t)v(t) dt

t o

= L(voV) (31)
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The adjoint I_, applied to an n-vector p is

" L_p = (Q;I/ZB' 0 _- l(t0)_'(T)p. Q- 1/Z(t)B'(t)_'- l(t)_'(T)p)

(3z)

The support function of the unit sphere in Hilbert space is just the

norml for the sphere of radius p it is

T

A A _A /G(v,v) = p(v'v + -'(t)_(t)dt)I/2 (33)

to

The support function oi the reachable set follows from Eqs. 32_ 33

by the duallty substitution, Eq. 6:

h(p, T} = p_rp'_(T)_-l(t0)BoQolB_-l(t0)_'(T)p

T

+ / p'_(T)_- l(t)B(t)Q" l(t)B'(t)_- llt)_(T)pdt ] I/Z

t o

= p(p'M(T)p) 1/2 (34)

where

I

M(T) = _[_TI_'I(t0IBgQ; IBb_°l(t0)_'lT)

T

+ / _(T)_- l(t)B(t)Q" l(t)Bt(t)_[_- l(t)_t(T)dt

t o

(35)

Diff_enttating Eq. 3.5 one obtains t- matrix differential equation for

the symrnetricD non-negative definite matrix M(T).

d--_MT_ = A(T)M(T) + M(T)A'(T)+ B(T)Q" I(T)BI(T)

I

wi_h M(t0)z B0001Bo (36)
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Using this fact, differentiation of Eq. 34 gives a partial differential

equation for h(p, T)

ah ---
- _h P'BITJQ" I(T)B'(TIp+p'A(T) _)h 137)ap

or for its square

8h 2 1 t
8T p ptB(T)Q- (T)B (T)p + p'A(T) 8h2 (38)= -_-

with initial condition

hip, O) = p(p'BoQ01B_p) 1/2 139)

Since the mapping of Eq. 31 is linear and completely continuous the

reachable set, image of a Hilbert space sphere, is compact and

convex.

When M(T) is positive definite, the reachable set is the ellipsoid

{x: x'M-I(T) x <__ p) (40)

When M(T) is singular, the reachable set is confined to the

range subspace of M(T). In this subspace M(T) has an inverse and

the reachable set is the flattened ellipsoid described by Eq. 40

restricted to this subspace.

Controllability means that the reachable set for unconstrained

u, startiug with _ = 0, is R n. Equivalent to this is to say that for

p > 0 B 0 = 0 and Q(t) = I the reachable see has an interior, i.e.,

det M(T)f 0. Since cI_T) is nonsinqular this reduces to

T

det f _-l(t)B(t)B'(t)_"l(t)dt _ 0 141)

t O

a well-known result.

p
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4.10 SOURCES

The idea of viewing control problems as a propagation of

reachable sets may be found in Halkin [Z5]. A proof of

compactness and convexity of such sets is given by Neustadt [44].

For the maximum principle, see Athans and Falb [Z] and the

references quoted therein. For the usual definition of

controllability, see Kalman, Ho and Narendra [33]. For the

mathematical background concerning duality, convexity and

support functions see the sources given in Chapter V. The

application of the theory of moments to such problems is dis-

cussed, for instance, by Beckenbach and Bellman [3].
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CHAPTER V

VEGTOK ADDITION GAMES

5.1 INTRODUCTION

In the present chapter the problem with internal state output of

Section 3.13 is considered again and, for the first time in this work,

specific assumptions on structure are made. Essentially, a form of

linearity is assumed. The problems satisfying these assumptions

are called vector addition games. They can arise from a variety of

classical control situations and they are reducible to a simple

canonic form. Their solution depends on the properties of the cri-

terion such as convexity or homogeneity.

5.Z VECTOR ADDITION GAMES

The problem of Section 3.13 is a vector addition game if it

has the following structure.

Let L (i) for i=O, l,...,n
X

L}_(i) ior i=l,...,n

Lv(i ) for i-1 .... ,n

be real linear spaces.

Let ,ax(i ) for i=O,.., n be a subset of L (i)m X "

One may always for i>O take _0x(i ) = Lx(i), while

_Ox(O) is a singleton in Lx(O ). The st, ace Lx(n ) will

also be designated by the abbreviated notation L.

-109-

1966024151-121



-110-

Let _i and v.x for i=l,...,n be functions

_i: _u (i)-" L (i)

vi: _q(i) -" Lv(i)

Let Ai'B'I and C.I for i=l,...,n be linear functions

A.I: Lx(i-l) -- Lx(i )

B.I: h (i)-_ Lx(i)

c.: L (i)--L(i)
I V X

Let the state transition equation be

x.: A.x. + Bi_i(ui) + C.v. (qi)1 11-1 11

As in Section 3.13 the criterion is given by K(u,q) = k(Xn) where

k:L -_ X. The output equation is Yi = x. for i=l, ... n-11 m *

The problem is to find a controller in F to optimize
np

guaranteed performance.

5.3 LINEAR DIFFERENTIAL SYSTEMS WITH END-POINT
CRITERIA

A first example of a vector addition game is the following.

Let t , ..., t be an increasing sequence of real numbersO n

Consider the differentialequation for an m-vector valued

function _ on [to,tn]

(t) = H(t) _ (t) + _u(U(t), t) + _q(q(t) t) with _ (Co) : x' 0

In this differential equation

H is an m by m matrix of integrable functions on [to, tn].

u is an r-vector of bounded measurable functions on [to, tn] ,

selected from a markovian input set U.
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q is an rt-vector of bounded measurable functions on [to, tn]

selected in a markovian set Q.

_bu and _q are continuous m-vector valued functions of

their arguments.

Assume that outpa:ts Yi = _(ti) are delivered at time t.l for

i-l,...,n-1 to a controller which selects the restriction u. of u

to (ti_l,ti] on the basis of (yi,...,Yi_l).

The functions q are uncertain and the controller is to be

designed to optimize guaranteed performance with the criterion

K{u,q) :

This problem can be reduced to a vector addition game as

lollow s :

Let $ be the transition matrix corresponding to H.

Let x.x = _(ti) for i=O,...,n

u. = restriction of u to (t i ,ti] for i= I, nl -I "''' "

_Ou(i) : set of all restrictions u.1 for u in U,

qi - restriction of q to (ti_l,ti] for i=l,...,n.

_Oq(i) : set of all restrictions qi for q in Q.

Lx(i ) - R m for i--O,...,n.

Lu(i ) = Lq(i) = (Loo(ti_l,ti)) m for i=l,...,n.

_i(_ti) = restriction of Cu(U(t),t) tn (ti_l,ti]

vi(qi ) = restriction of _q(q(t),t) to (ti_l,ti]

Then the transition equation and the linear functi ",AsAi, Bi, and

C i are given by

I
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t.

1

x.1 = ¢(ti'ti-l)Xi-1 + / @(ti,T)#u(u(T),T)dT.
t.
l-l

t°

l

+ / @(ti,T)_q(q(T),T)dT
t.
I-I

where the first integral could be written

t.
1

f [%(ui)](')d"
t.
l-I

and similarly for the second integral.

5.4 LINEAR DIFFERENTIAL SYSTEIV, WITH GENERAL CRITERIA

5.4.1 If the criterion, in the problem of Section 5.3, depends

also directly on u, say by way of an integral, then the running

value of this integral can be taken as an additional component of

and the problem is still of the same type. This reduction, the Bolza

to Mayer reduction, is well known in the calculus of variations. Un-

fortunately it has the effect of hiding in the dynamics of the system

many useful properties that the criterion may have, preventing one

from taking advantage of such properties. For this reason an ap-

parently much more elaborate alternative way to reduce such a case

to a vector addition game is of interest.

Let x.1 = (_(ti)' Ul''"'ui)
\
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i

sothat Lx(i ) = RmxVF(Loo(tj=l,tj]) r
j=l

R m )r= x (Lo (to,t i]

The transitions of x. are described by the equation oft

Section 5.3 together with the adjunction of ui, a linear operation.

Then x n = (g(ti) 'ul,...,un) = (g(ti) ,u) and the criterion

k may be any function on L Lx(n ) R m )r= = x (Lco(to, tn] .

The output equation Yi = x.t is still valid because of perfect

recall.

5.4. Z If the criterion depends also on the time-function 6,

say by way of an integral of a function of _(t), a(t) and t, then the

Bolza --_ Mayer reduction would destroy the linearity of the dif-

ferential equations. It is thus even more advisable to proceed dif-

ferently. Two cases must be distinguished.

a) k depends only on _ by w_y of the values _(ti). Then,

because of perfect recall, it suffices to take as internal state

= (g(t) g(ti) i)Xi 0 )''') 'UI'''''U

that is the state of knowledge of the controller. The linearity is
x

trivially preserved and

x n = (g(to),...,g(tn), Ul,...,u n)

contains all the arguments for the criterion.

b) k depends on the entire function 6.

)
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Then the reduction to a vector addition game is impossible

unless the physical assumptions are slightly modified.

Suppose that at time ti(i=l,... ,n-l) the controller receives,

in one fell swoop, the restriction of g to (ti.l,ti]. One may imagine

a recorder which records on successive sheets, out of view of the

controller, and ejects each sheet, corresponding to the time interval

(ti_I,ti) at time t.1that is when the sheet is full. The state of

knowledge of the controller at time t. then includes the restrictioni

of both u and _ to [to,ti] while the system stillhas discrete

time internal state output.

Such a situation may seem strange but can be considered a

good app_ _ximation to reality when the s_._._.,_tngtimes are very

closely spaced. The interpretation is then that a continucus output

recording of _ is available but the designer is restricted to the use

of controllers which "look" at this output recording only every

so often.

Under these conditions a reduction to a vector addition game

is again possible.

Let s.l = restriction of _ to [to,ti]

and x. = (s ,u ui)l i I' "" "'

Then x i is the state of knowledge of the controller and may be taken

as the output. Linearit7 is preserved and x n = (Sn, Ul°... ,un} = {_,u)

contains the arguments required for k.

--. - -,
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5.5 SINGLE STAGE CASE

For n=l there are no outputs. This may also be called the

open-loop case• The problem is defined just by the criterion

K(u,q) and optimization is over a set of blind controllers. Con-

versely any problem with an outputless plant may be considered as a

problem with internal state ,utput (sic) but n:l. It is a vector ad-

dition game if one can write

K(u,q) = k(]_(u) + Cv(q))

indices having become superfluous.

Thus the only linearity requirement is that one have super-

position of the effects of u and q in the argument of k. This is a

very weak requirement as the following example shows.

Let _ and r/ be two vector valued functions on [to, tl] not

necessarily with the same number of components, solutions, for

given initial conditions, of

_(t) : fl(_(t),u(t),t )

rl(t) = fz(rl(t), q(t), t)

where u is a time function selected by the controller in a set U,

which need not be markovian and q is an uncertain time function

from set Q. Both differential equations may be nonlinear.

Now let

K(u,q) = k(_, r/, u, q)

thgt is k may depen_l on all time functions involved. Then a

vector addition problem exists because
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a) the linear space L is the product of the function spaces

of _, rl, u and q.

b) (_,17, u,_) - (q, 0. u, 0) + (0. r/,0, q) is the space L.

c) (_,0,u,0) depends only on u while (0, Q,0,q) depends

only on q.

This general observation leads to innumerable special cas, s. For

instance k might only depend on _(ti) and rl(ti). Then

(g(ti), q(ti)) = (_(ti),0) + (0, rl(ti))

where the first term is determined by u and the second by q, which

in effect choose points in the reachable sets at time t. of the two1

differential equations. Furthermore one can let g(to) depend on

u and r1(to) on q without destroying the superposition.

5.6 THE CANONIC FORM

A canonic form for vector addition games is obtained by the

simple device of extrapolating all effects to time t n

The following change of va:_ables is carried out :

x. = A A Ai+ il n n-l''" I x.

in particular x = xn n

u. = A Bi_i(ui)l n" " "Ai+ I

q'i = -An...Ai+l Civi(qi)

hence ¢_u(i) = An...Ai+iBi_ti(_u(i))

and _q(i) = -A n. .. Ai�I Civi(Wq(i))
t

Then the transition e_iuation becomem

1966024151-128



-I17-

where all variables are elements of L for all i. The criterion is

given by

n

i--I

Since the controller has a priori knowledge of the linear functions

A. it can determine "I_" = __" from the _bservation of Yi -- x.. TheI I

knowledge _f _i is sufficient for optimization because the transformed

problem is still a vector addition gamp -_nd afortiori a problem with

internal state output and markovian inp1_t sets.

The minus sign in the deflnit!on of _. is chosen ,Secause of

the intuitive appeal of the notion of distance in the case where the

function k is a norm.

5.7 EXAMPLE OF REDUCTION TO C.^_ONIC FOKM

In the case of linear differential systems with end-point

criteria, as considered in Section 5.3, tLe reduction to c_t_onic fcrn_

is obtained as follows.

The space L is R m and all new variaSles are elements

of Km. They are defined by

_. - _(tn, ti)_(ti) -- _(tn, ti) x _oz i=0, l n.I I P'''

to

I

= ti) .j" i. T)dT
ti -I
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t°

1

qi = -_/'(tn'ti) f @(ti-'')C_q(q(')'')d"
t.
xol

hence _Ou(i) = _t,(t )n' ti) C°u(i

where _0u(i ) is the reachable set at time t.t for

the system _(t) = H(t)_(t) + dPu(U(t),t)

with initial condition _ (ti_l) = 0

given that the restriction of u to (ti_l,ti] is constrained

to belong to _0u(i).

Similarly COq(t) = -$(tn, ti) _Oq(i)

where _Oq(i) is the reachable set at time t.t for the system

_(t) = H(t) g{t)+ ,q(q(t),t) with g(ti_ 1) : 0

and the restriction of q to (ti_l,ti] is constrained to _0q(i).

A great deal is therefore Icnown about the sets _u(i) and

_'q(i). Their compactness, convexity, symmetry, support functions

can be determined by the results of classical optimal control theory

and duality as in Chapter IV.

In the case of Section 5.4 the space L ts infinite dimensional

and in order to obtain sets _u(i) which are convex it becomes

necessary to assume that the set U of input functions is itself con-

vex in (Loo[t o ,t n])r and that Ou is linear in u.
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5.8 THE GAME-THEORETIC INTERPRETATION

From now on, assume that the problem is given directly

in the canonic form, so that the overbars become unnecessary.

The determination of the opvalue v is equivalent to the

determination of the (pure) value of the foUowing game.

Move I: minimizing player selects u I in _u(1)

Move Z: maximizing player selects ql in _q(1)

Move 3: minimizing player selects u 2 in _u(2) " '

etc., .......

n

The payoff is k(x0 + Z (ui - qi ) )
i=I

The game is of perfect information: at every move the player

who must act has knowledge of the selections made at all previous

moves.

The determination of optimal controllers is equivalent to the

determination of an optimal strategy for the minimizing player. Hence

the name ttvector addition game wt.

The determination of the Iopvalue v t for the control problem

is equivalent to the determination of the pure value of another game

of perfect information, with only 2 instead of 2n moves, and the

same payoff function.
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Move 1: maximizing player selects sequence (qlp...,qn)

with qi E_q(i)

Move 2: minimizing player selects sequence (Ul,...,Un)

with ui_u(i )

Another number of interest is the value v" of the game of

perfect ilfformation, with 2n moves, played as follows:

Move 1: maximizing player selects ql in _q(1)

Move Z: minimizing player selects u 1 in _u(i)

Move 3: maximizing player selects qz in _q(Z)

etc. _ .....

By the interchange inequality v t < v" < v.

If one considers the game of imperfect information, with n

moves, played as follows:

Move i: Both players select simultaneously, one u i in _u(i),

the other qi in _q(i), knowing the selections made

at all previous moves

then v is the upper value and v _' the lower value of this game.

5.9 THE DYNAMIC PROGRAMMING ALGORITHM

The solution of the problem by dynamic programming is straight-

forward in principle. It can be organized as follows:

First Step: Define En: L---R e

Dn.l: L ---R e

gn: L -'_u(n)
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by

En(X) = sup k(x-q)
q C(Oq(n)

Dn _l(x) = in/ En(X+U)
U e:_u(n}

gn(X) = a minimizing u

Second Step: Define En- I: L -_ R e

Dn_Z: L -" R e

gn-l: h -'_u(n-l)

by En- I (x} = sup D n_ l(x'q)
q e_q(n- 1)

Dn_Z(x) = inf E l(X+u)n-

u_,u(n-I)

gn.l(X) = a minimizing u

Last (n th) Step: Define El: L --_ R e

ve K e

g i et_u(I)

= sup Dl(X-q)

by E 1(x) qe_q(I)

v = in( El(X0+U)
U¢_u(1)

El = a minimizing u

Then v is the opvalue and the gi define the optimal controller,

by u 1 = gl and u i= gi(xi .1 ) = gi(7i .1 ) for i = Z,...,n.
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5. 10 THE CONSERVATION OF CONVEXITY

It frequently happens that the function k is convex (it might

be a norm or a positive definite quadratic form) and that the sets

_u(i} are convex (as reachable sets of linear systems).

Under these conditions the functions D. and E. will likewise
1 1

be convex, that is, convexity is conserved in the recursive

procedure of Section 5.9.

indeed, assume D. is convex, then for 0 < 0< 1

E.(Sx + (1-8)y) = sup Di(Hx + (1-8)y - q)l

q_tOq(i)

= sup D.(_(x-q) + (I-8) (y-q))
1

q_q(i)

<_ sup (8 Di(x-q) �(1-_)Di(y-q))

q_COq(i)

sup 8 Di(x-q) + sup (I-8)Di(y-q)

q _'Wq{x) qcta cli )

= 8 Ei(x) + (1-$) Ei(Y )

Now assume E. is convex, then for 0 < 8 < 1

D. l(SX+(l-8)y) = inf E.(_x+ (1-8)y+u)1- 1

u eu(i)

Since tau(i ) is convex _u(i) = 8_u(i ) + (l-S)_u(i). Hence

D.1_l(0X+(l-8)y) = inf in/ gi(Sx+(l-8)y+eul+(l-_)u2)
Ule_u(i) u2eC_u (i)

= inf inf Ei(8(X+Ul )+( I- 8) (y+uz))
u I eC_u(i ) u2 e_u(i )

<_ inf inf (8Ei(X+Ul)+(l-8)Ei(Y+Uz))
UleWu (i) u2e_u (i)

= OD.x.l(X) + (i-O) Di.l(y)
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Now since k is convex, the convexity of all functions D. and,

E. follows by recursion. QED
I

Note that the sets _q(i) need not be convex. Similarly if k

is concave and the sets _q(i),, are convex then all functions 1_._ and

D. are concave and the sets tOu(i ) need not be convex for this result.1

5. 1 1 THE CONSERVATION OF UNIFORM CONTINUITY

Suppose the function 4: L --- R has the property that, for all x

and y in L

{ktx)-kty)l<_

then, for all i,

IEilx) - EilY)I <_ ,Ix-y)

and IDi(x) - Di(Y) I < &(x-y)

Assume
I

{Di(x)- Di(Y){ <_.

then Di(Y) - _(x-y) _< Di(x ) _< D.(y)I+ $(x-y)

Replace x by x-q and y by y-q

Di(y-q) - _(x-y) < Di(x-q) < Di(y-q) + _(x-y)

Take supremum over q in _Oq(i)

El(Y) - _(x-y) < El(X) <_ El(Y)+ $(x-y)

or IEi(x) - Ei(Y)l <__ _(x-y)

and this last relation implies IDi. l(X ) - Di.l(y) I < _(x-y) by an

entirely similar argumer, t. Hence the claim follows by re, ._rsion.
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Note that it is not necessary that the sets COu(i) and COq(i) or

the function k be convex.

The function _b need not be even (_b(-x) = _b(x)) but, if it

is not, it can be replaced by rain (_(-x) , _(x)) or by

1
_(_(-x) + d_(x)), which are.

In case _ is a norm, one has the conservation of Lipschitz

continuity: whenever k is Lipschitz continuous, with constant k,

with respect to some norm, the functions E. and D. are Lipschitz
1 1

continuous with the same constant with respect to this norm.

The same result holds for I-fblder continuity, by letting

be a power of a norm.

More generally, if _ can be interpreted as a modulus of

uniform continuity with respect to a norm, then the result 3ays that

E. and D. ure uniformly continuous with the same modulus.1 1

Finally if k is a norm, hence convex and Lipschitz continuous

with respect to itself with constant 1, then the functions E. and1

D. are Lipschitz continuotts with constant I with respect to1

norm k. Furthermore, if the sets _u(i) are convex, E. and D.1 1

are also convex, by conservation of convexity.

5. lZ WHY A MINIMAX PRINCIPLE DOES NOT HOLD

The determination of the opvalue is equivalent to that of the

pure value and saddle-point of a game of perfect information, as

pointed out in Section 5.8.

In the continuous time case, the theory of differential games

provides necessary conditions, which may be called a minimax

principle, for saddle-points. These conditions are very similar to
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the maximum principle for one-sided optimizatio,. On the other

hand, discrete time maximum principles are available in the

one-sided case, especially with convex constraint sets. Thus one

would expect that a discrete minimax principle would apply to

the solution of vector addition games, at least with convex

constraint sets.

The adjoint equation for the canonic form of a vector addition

game is simply Pi-1 = Pi that is a constant costate, because the

state is constant for zero inputs.

The reason for the failure of this approach is the following.

In differential games singular surfaces arise, on which the costate

undergoes a Jump. In the discrete time game, there is the

possibility of a jump between any two consecutive moves. Thus

the costate equation is really Pi-I = Pi + k. where k. is the jump. The1 1

occurrence of Jumps and the corresponding values of ki depend

on the behavior of the solution in the large and cannot be determined

by local variational techniques. Thus the ki are additional unknowns

for which there are nc simple equations. Hence the costate is

completely undetermined and the minimax principle is vacuous.

One case in which a minimax principle can be shown to hold,

is the case where the function k is linear. This essentially trivial

case can be handJ_d even more easily by duality as in the sequel.

To see how the singularities arise, note that the points x for

which El(X) = a are just those points (if any) for which the set
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x - _q(i) is just contained in the set S = {x: Di{x ) <_a} that is

the boundaries are in contact. Now the singularity arises for

any x for which the boundary of x -tOq(i) has two or more

contacts, from the inside, with the boundary of S. Even for

convex S this ia a common occurrencej it leads to _. corner in

the locus Ei(x ) -- ct, and the presence of this corner is impossible

to detect by local analysis.

5. 13 THE USE OF DUALITY

The sets tOu(i ) and _0q(i) are often closed and convex but

they may be known only by their support functions. Let s. be
I

the support function of t_u(i) and Gri the support function of tOq(i).

In case the function k is convex, in particular if it is a

norm, the problem can be brought to a dual form.

Note that if k is a monotone increasing function of a convex

function it is sufficient to solve the problem for the convex function

because extremization commutes with monotone functions.

To simplify the exposition of the duality transformations,

the following assumptions and conventions are made.

1. L is assumed finite-ditvaensional

2. Extended real valued convex functions are used when

required, though we do not stop to Justify their u_e. Suffice

it to say that the necessary mathematical apparatus has

been developed, The occurrence of infinite values is not

a complication but a simplification (Just as the occurrence
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of zero values is often a simplification). When infinite

values occur certain technical requirements must be met,

they will be tacitly assumed.

The case of infinite dimensional L requires a more

sophisticated mathematical apparatus which is still under active

development in the current literature. Itwill not be considered

here.

If the sets _Ou(i) and tOq(i) are bounded the_, the _t

Xo + _u(i) - _o
i= I i= I

which contains all arguments of k that matter, is also bounded.

Now for k convex and real-valued on L, it follows that k

is continuous on L and is Lipschitz continuous on any bounded

set. Hence, by conservation of Lipschitz continuity and convexity

all the functions E. and D. are Lipschitz continuous on any
1 1

bounded se_, convex and real-valued. In particular, every infinum

is a minimum an4 every supremum is a maximum since the constraint

sets were assumed closed.

Note also that the support function of a bounded set is convex,

real valued, positively homogeneous and Lipschitz continuous with

respect to the dual norm with a constant equal to the maximum of

the norm on the set.

t
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/
The practical import of Lipschitz continuity is the following.

To compute the maximum of a continuous function on a compact

set to finite accuracy in finite time is impossible without additional

information. I£ the function is Lipschitz continuous with a known

E

constant k then the maximum lies between a and a + _ where

a is the maximum of the function on a finite _-net. Since compact

sets have finite t-nets for all _ > 0, that is, are totally bounded,

the extremization can at least always be carried ou* by brute force.

The use of variational techniques is inadequate because there

are no local sufficient conditions for a maximum of convex function

on a conveA set. Many local maxima are the rule.

The duality transformations are based on the following concepts.

Let L* be the dual of L, the .,et of all linear real valued

functions on L.

For p in L* and x in L, (x,p) or (p,x) designates the

value of p at x.

The support function s: L *-_ I% of a set A in L is defined
e

by

s(p) = sup (a,p)
aEA

The Fenchel transform kf: L* ---R of a function k : L ---R is
e e

defined by

kf(p) = sup ((x,p) - k(x))
xEL

k f is always convex. If k is convex then (kf)f= k. If k is not

(kflfconvex then is the "convexification" of k: the supremum of

all convex functions which do not exceed k at any point.
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Thus if k is convex, it has the duality representation

k(x) = sup ( (x, p) - kf(p) )
pe L*

If k is a norm, its dual norm k* on L* is defined by

k*(p) = sup k(x)
x_B

where B is the unit ball {x_L: k(x)_ 1 }.

The dual unitballis B* = (pcL*: k*(p) < 1}. One has

(k*) * = k and the representation

k(x) = sup (x,p)
pcB*

If k is a pseudo-norm (because there may be components about

which we do not care) then the dua] k* is an extended real valued

norm. B is a cylinder while B* is flattened into a subspace.

Thus the sup _n the representation of k(x) is on a lower dimensional

set, a great simplification.

Note that k* is the Fenchel transform of the function which

equals 0 on B and +co elsewhere. More generally, the support

function of a set is the Fenchel transform of the function which

equals 0 on the set and +co elsewhere, the indicator function

of the set.

Convention: In the sequel the sets over which the dummy

variable of an extremization ranges are not indicated when it is

clear which set is meant.
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5. 14 SINGLE-STAGE DUALITY

In the single-stage (open-loop) case, the opvalue v and

Iopvalue v' are given by

v = in/ sup k(x ° + u-q)
u q

v' = sup in/ k(x ° + u-q)
q u

This may be written

v = inf E(x o+u)
U

where

E(x) = sup k(x-q)
q

But k(x-q) = sup [(x-q,p) - kf(p)]
P

E(x)= sup sup [(x,p)-(q,p)-kf(p)]
q P

- sup [(x,p) +_r(-p) - kf(p)]
P

where _ is the support function of set ¢0q which need not be convex.

The function E is convex by conservation of convexity; this is

obvious here because E is expressed as the supremum of a family

of linear functions.

Now if _ is convex the determination of v reduces to theu

minimization of a convex function on a convex set, so that local

minim&lity is sufficient.

As for the Iopvalue

sup inf sup [(Xo, P) + (u, p) - (q,p) - kf(p)]
V !

q u p
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since the bracket is concave in p and linear in u, one can,

for a convex set C0u, i.terchange the extremizations over u

and p to obtain

v' = sup sup inf [(Xo, P) + (u,p) - (q,p) - kf(p)]
q p u

= sup [(x o,p) - s(-p) +ar(-p) - kf(p)]
P

where s i$ the support function of co
U

In case k is a norm, one has

v = inf E(x ° + u)
U

Z(x)= sup [(x,p) + o'(-p)]
p_B*

In case k is linear, k - (., x), one has

v = inf sup (x O + u-q,=) = (Xo, V) +0"(-v) - s(-v)
u q

v' = sup inf (x ° + u-q,v) = v
q u

a zero-gap situation.

5. 15 MULTISTAGE DUALITY

Applying the Fenchel transformation to the dynamic programming

algorithm

Eilx) = sup {Dilx-q) : qecoqli)}

Di_ l(X)= inf {Ei(x+u) : u_cou(i))

one obtains the dual algorithm:

E_(p) -- sup inf [(p-p',x) - _ri(-p' ) + Df(P')]i
x pt

DifllP)- Elp) +sil-p)
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f
In case the difference D: - _. is convex, the first equation

1 I

reduces to

ECx(p) = D'fx(p) - _i(-p)

If the difference is not convex then the first equation expresses

E.f as the convexification of this difference. It can also be written
I

1 E_(p) : (D_':p) - o'i(-p))ff

It is the, possible need for convexificationwhich makes the "discrete

mir'max principle" fail. Note the inequality

E'fl(p) --< D'fx(p) - _i('p)

The determination of the lopvalue is much simpler

n

sup sup ... sup inf inf ...inf k(Xo + I (ui-qi)
V ! )

q l qz qn U l uz Un i = I

for convex k and convex sets COu(i),the dual representation gives,

as in the single stage case

n

v' : sup ((Xo, P)- kf(P) + I (¢i(-P)- si(-p)))P i:l

If, in the dual dynamic programming algorithm

- -
holds for all p and i (no need for convexification), then

n

Dfo (p) : kf(p) + I (si('P) " _rl(-P))
i=I
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s o that

v = DolXo: sup[%, Dfolp1 = v,
P

and the zero-gap situation prevails.

The convexification apparently requires extremizations on

all of L and It* , an impossible procedure for a computer

program. In fact, when the primal criterion function is real

valued and the sets OJu(i) and _q(i) are bounded it is poszible

to show that extremization over compact sets, determinable

by estimation inequalities, is sufficient.

Finally, note that the case of concave k can be treated by

taking it as the negative of a convex function. The effect is to

replace in/ by sup and vice-versa, with corresponding

significant changes in the dual algorithm.

One question of interest in uncertain control problems is

that of reach_bility. Given a set, can one find a controller such

that the internal state at the final time will belong to this set,

regardless of what the uncertain quantities are? For a vector

addition game and set to be reached which is closed and convex

the reachability problem amounts to considering as criterion k

the indicator function of the given set. Then k f is the support

function of this set, so that the dual algorithm deals entirely with

positively homogeneous functions.

Much remains to be done to explore the properties and the

implementations of the dual algorithm.
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5. 16 SOURCES

The theory of two-person zero-sum games is due to Yon

Neumann [58]. The textbook of Marlin [34] contains many of the

results of this theory and of the convexity and duality concepts

used in this chapter. For the major saddle-point theorems,

see Ky Fan [36,37] and Moreau [43]. The texts on convexity

by Eggleston [15] and Valentine [56] were helpful, as well as

the beautiful monograph of Lyusternik [39].

The problem of minimizing a convex function on a set known

only by its support function has received attention by Goldstein [Z4]

and Gilbert [Z3].

The theory of conjugate convex functions is due to Fenche_ [ 19],

hence the name Fenchel transform. For its developments see

Moreau [42-] and Rockafellar [48]. An idea of the difficulty of

the infinite-dimensional cas_ can be obtained from the paper of

, Bronsted and Rockafellar [ II] and the references quoted therein.

The theory of games as applied to control situations is so

far exclusively centered on the differential games introduced by

Isaacs, that is, to a continuous-time zero-gap situation [28, 29].

For developments of this approach see Gadzhiev [Zl], Grishin [Z2],

Berkovitz and Fleming [8,9], Pontryagin [46], Ho, Bryson and

Baron [26].
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CHAPTER Vl

BOUNDS FOR THE PERFORMANCE OF
SUBOPTIMAL CONTROLLERS

6.1 INTRODUCTION

In this chapter vector addition games are considered in

which the criterion function k is a pseudo-norm on the real linear

space_ L, whicb may be infinite-dimensional.

Thus k(k×)- [k[ k(x)

and k(×+y) < k(x) + k(y)

the notation k(x) = [[x[l will be used.

Since extremization commutes with monotone increasing

functions, all results for guaranteed performance can be translated

from the pseudo-norm case to the case where k is a monotone

increasing function of a pseudonorm, such as a power.

The objective is to obtain bounds for the guaranteed performance

of certain suboptimal controllers. These controllers are obtained

by optimization under the (incorrect) assumption that the uncertain

vectors qi are fixed at assumed values qoi"

Pseudonorms are considered because their ratios have an

interesting dimensionless meaning. Strict norms are a special

case but pseudonorms allow the possibility of "don't care t' components.

The use of pseudonorms creates no difficulties because everything

takes place effectively in a quotient space which is strictly normed.

-135-
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6.2 THE NAIVE CONTROI,LERS

In an n-stage vector addition game let qol'"''qon be

assumed values of the uncertain vectors.

A naive blind controller is a controller which applies,

blindly, the input sequence Uol,...,,Uon where Uoie_u(i) and

n n

klXo+ _ %i- %i))-- rain .. rain k(Xo+ _ % - qoi))
i= 1 Ul_C°u (i) UnE_u (n) i= 1

(1)

There may be zero, one or many such controllers. We are

interested in statements about such controllers on the assumption

that some do exist and we want these statements to hold for all

those that exist, unless otherwise stated.

Naive feedback controllers are obtained as follows: For each i

from 1 to n, consider the truncated problem, just after the

J ) {j = i,.. , n)observation of Xi_l " For each Xi_l let }_i(xi-I

be a naive blind controller for the truncated problem, that is

J )e_u(j) and_i (xi- 1

n n

klxi- I + 1_ (xi- l)'qoj ) ) - I (uj-qoj
j=i uie_u (i) Une_u (n) jffii

(z)

Then the corresponding naive feedback controller is defined by

ui = _'i{Xi-l) = PLI {x i.l} for i = l,...,n {3_
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Again it is assumed that at least one naive feedback controller

(TI,...,Tn) exists, and there may be many.

This construction of the feedback controller is precisely

what is called the synthesis of optimdl control as a feedback law

in the classical case of no uncertainty. If the assumption that

qi = qoi were indeed correct the naive blind controller and the

naive feedback controller would both be optimal and give precisel7

the same value to the criterion, no supercriterion would be needed.

Since the assumption is incorrect the performance of both

controllers must be evaluated by a supercriterion, in general

these performances will be diiferent and neither will be optimal.

The guaranteed performance Jo of the naive open loop con-

troller (u ol,...,uon) is definedby

Jo = sup {k(Xo " q + Uoi) : qe _q(i)} (4)
if 1 i= 1

The guaranteed performance Jf of the naive feedback controller

is defined by recursion as foll.ws:

Gn_l(X) ffi sup k{X '0- q)

qewqln)

Gn_2(x ) = sup Gn_l(X (X)- q)
qCC_q{n- 1)

etc. _ .....

Jf = sup Gl(X ° + 71{Xo) - q) (5)

q,Caq(1)
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Finally, designate by J* the opvalue v of the problem, that

is the best guaranteed performance which can be obtain, d, at

least within e, by using truly optimal feedback control, as

considered in Chapter V.

Then Jo >- J* and Jf >_ J* by optimality. Note that for the

single stage case Jo - Jf because there are no outputs.

We shall say that the naive open loop cont,'oller (Uol, ..., Uon )

corresponds to the naive feedback controller (71 ,...,Tn ) if

Uol = 'Yl(Xo)

and for i = 2,. ,r,

i-I

Uot = _i_Xo + _ (Uoj- qoj)) 161
j=l

6.3 MAIN ASSUMPTI('_"_

A first assumption is that the sets _0q_i) are b_q:l_ded in

pseudonorm. This assu_es that Jo, Jf, J* and all other quantities

considered will be finite.

No'/ note that Jo' Jf and J_ are uncha_g,:& if one or more

of the sets _u(i) and _Oq(i) is replaced by its closure in the

pseudonorm topology. Furthermore if all the suprema over the

sets COq(i) involve convex functions, then nothing is changed by

replacing one or more of the sets _q(i) by the closure of its convex

hull. These replacements will be tacitly assumed.
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Clearly the assumed values qio must bear some relation to

the sets _q(i). The second basic assumption is that for i= l,...,l_

qio belongs to 0aq(i). By the above it suffices that it belong to

the closure of the convex hull of C,q(i).

Besides the two basic assumptions, three additional assumptions

will be investigated as to their consequences.

AssumptionS:. For i=l,...,n the set 0aq(i) is symmetric

about the point qoi"

By the remarks above it suffices that the closure of the convex

hull of _q(i) be symmetric about qoi"

Assumption C: The sets _au(i ) are convex for all i. (I_ suffices

that their closure be convex).

Assumption P: The pseudonorm is quadratic, that is, it satis:ies

the parallelogram law

llx+yll2+llx-yllz - zII_II2+ zllyll2 (7)
Assumption P impiie, s that

= 1 2xy__(II_+yll-11_-yllz) (8)

ts a pseudo inner product on L. In the present chapter it is denoted

by juxtaposition. Hence x 2 = Ilxllz

One has xy = yx

x(y+ks) = xy + ),xz

2
x > 0

{_ <_IIxII•IIy11 (9)
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The additional properties that

Z
x = O:_x=O

and [XYl= IIxll • IIyll x,y linearly dependent

are only true for strict norms and inner products, they are not

_eq,nred in this chapter.

Note that no assumptions are made on the dimension,

completeness or separability of the pseudonormed space L.

6.4 THE SINGLE-STAGE CASE

For the single stage case (n=l) the time index i becomes

redundant. By translation of _ or _o one can take x = 0
u q o

without loss of generality. According to the basic assumptions

the assumed value of q is qo e_0q and sup 11_qll< oo.

A naive controller is defined by Uo, with

[[u ° - qo[] = rain [[u - qo[[ (I0)
U E_

U

Define J: L -" R

by J(x) = sup [Ix- q[[ (11)
q Eta

q

then J* = in/ J(u) (12)
UE_O

U

and Jo = J(Uo) (13)

As a supremum of convex functions J is a convex function.

By the triangular inequality

Ilx-qll - Iix-yil<_ Ily-q[[<_ [[x-q[[ + [[x-yl[
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taking the sup over q in
q

_(x_-11x-yll<_5¢y)<_5¢x)+ {Ix-yll

or {j(_)-j¢y){<_.{{_-yl{ (14)

hence 5 is Lipschitz continuous with the constant I. Define

R ° = sup llq- qol[
q eCOq

The most immediate inequalities are summarized in

Theorem o. 1 Under the basic assumptions

, _ _ < IIuo-%Umax(llu° -qo[I Ro/Z)<5*<5o_ +Ro

Proof: J$ < 5 because u belongs to
-- 0 0 U

J0 = sup HUo-qH = sup l_Uo--qo)+(qo- q)ll

q E_q q _q

< llUo-qo u + sup [lqo-q[[= [[uo'qoI[ �R-- 0

q _COq

Since' qo belongs to _q

5cu)- ..p 11u-qll>_IIU-qoll
q _q

By (I0) for u in coU

IIU-qoll>_IIUo- qoll

so that .T(u) >. [[Uo-qo[ [

taking inf over u in U

5*_>IlUo-qoll
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Finally Ilqo-qll < Ilu-qoll + Ilu-qll

or R° = sup Ilqo-qll _< IlU-qoll + :(u)_< Z:(u)
qEca

q

because qoeWq

taking inf over u in u

R < 2J* OED
O --

A more interesting type of bound is obtained by finding the

smallest number = such that J < a J* under a given combinationO_

of assumptions. These ratio bounds are derived in the theorems

that follow.

Theorem 6.2 Under the basic assumptions solely or augmented

by C or augmented by P (but not by both) the

smallest number a such that

J < a J* is 3
o--

Proof: A. First show that the basic assumptions alone imply J < 3J*.o--

and q in by the triangular inequality
Indeed for all u in _u ¢0q,

IiUo-qll! IIUo-qoII+ IIqo-ull+ IIu- qll
By (1o): Iluo -%11<_Ilqo-Ull

Since qo and q belong to ¢Oq:

IlUo-qll <_aZ(u)

Taking inf over u in _u:

II%- qU<__*

Taking sup over q in ¢Oq."

J <3J*
O--
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B. To show that the bound is tne best it suffices to produce an

example where 0 < J0 = 3,,T_with C satisfied and another such

example with P satisfied.

Take L = R 2 with the sup norm. Let ca = {(0, 1), (2, t)},
q

wu = {(a,0): aeR}, q0 "_ (0, 1) and u 0 = (- 1,0}. Then J'0 = 3 and

J*- I while C is satisfied.

Take L'--R with,lb_olute value norm. Let c_ = {I,3},
q

_u = {0,2}, q0 = l, u0 = 0. Then J0 = 3 and J* = l while P

is satisfied. QED

The proof of Theorem 6.2 requires only the triangular inequality,

hence the bound also holds in pseudometric spaces.

Lemma 6. 1 If assumption P and C hold, then for all u in coU

(qo'Uo) (u-u o) < o

Proof: If [lu-u011 = 0 the inner product vanishes by (9), otherwise

by (10)

IlUo-qoll = rain I] u- qoII
UEco

U

Thus for u in
U

I1%-Uo[I z <[Iqo-ull z = II(qo-Uo)-(U-Uo)l[ z

or Ilu- UoIIZ_Z(u-Uo)% - Uo_>_0

Since a_u is convex and contains u 0 and u, for 0 in [0, 1]

u 0 + 8(u-u0) belongs to cou ard
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0Zllu-uoll2 - ZS(U-Uo)(qo-Uo) _ o

The claim follows by taking

I(U-Uol(qo-Uo)l
0 = min [1, ]IIU-uollz

QED

In other words, this well known property of euclidean spaces

actually holds in any real pseudoprehilbert space.

Theorem 6.3 If the basic assumptions are augmented either by

$ or by $ and C or by P and C, then the

smallest number a such that J0 <_o J* is 2.

Proof: A. First show that S implies J0 <--2J*.

Since J is convex and S implies J(x)- J(Zq0-x), q0 must

give J its absolute minimum over L. Thus J(q0 ) < J*. By

Theorem6. l, Ilu0-q011__J*
By the triangular inequality

Iluo-qll__llUo-qoll + IIqo-qll

take sup over q in _ to obtain
q

J0_-IIu0-qoII + J(qo)__z_,

B. Now show that P and C imply JO <_2J*. For u in _ou

llu-qollz = llu-uo+ uo - qollz

= llu-.ollz+ll--o-qollz �z(u-uo)(-o-qo>_II--_olIz

(usinglemma6._.)ThusIIU-uoll<_IIU'qoll<_supIIu-qll=J(u).
q _q
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Also for all q in toq and u in tou

l[q-uoll = l]q-u+u-uoll <_ [Iq-ull + IIu- uolI <_11q-ul[ + J(u)

take sup over q in to
q

,T0 < 2J(u)

and inf over u in to
U

J0 < 2J*

C. To show that the bound is the best it suffices to produce an

example with 0 < J0 = 23" for which S and C hold and another

such exa_nple for which P and C hold.

Take L = R 2 with the sup norm, let to = {(- 1, 1), (1, 1)}.
q

_au= {(a,O): aeR}, qo = (0,1) and Uo= (1,0). Then 3"0= 2 and

J* = 1 while both S and C hold.

Take L = R with the absolute value norm, take to = R,
U

= {0,2}, q0 = 0, u 0 = 0, then 30 = 2 and J* = 1 while bothtoq

P and C hold. QED

Theorem 6.4 If the b_tsic assumptions are augmented by S and

P, then the smallest number a such that

J0<- aJ* is 92.

Proof: To show that the bound holds, note that for all u in tou

and q in COq by assumption S
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j2(u) >_ max (}}u-q}{2, [lu-2q0 + ql{2)

•- max ([}(u-q0) - (q-q0){}2 , {{(u_q0)+(q_q0)[{2)

= [}u-q0{{2 + [{q-q0[[2 + 2{(u-q0)(q-q0) {

>__itu-%itz +}{q'qoi{z

>_.{[u0 -q0{{2 + {{q-q0{{2

by (I0). Taking inf over u in toU

j,z _ lluo_qoliZ+ {lq_o.ollZ

I 2

- _ lluo-qll+ ½llUo-:'% +qll:'

by P

>__½ l{Uo_qllz

Taking sup over q in
q

1 2
j,z >__ J0

To show that this bound is the best take the euclidean plane for L,

let_q-((-I,0).(I,0)),_Ou=((_I'_Z):_z+x_- I).qo-(o,o),
u 0 = (1,0). Then J0 = 2 and J* = qr2 while both S and P hold.

QED

Theorem 6.5 If the basic assumptions are augmented by

S, P and C, then the smallest number a such that

J0 <-as* is 2/¢3.
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Proof: Define m: L x L---fl by

m(u,q) = max (llq-ull 2o IlZqo-q-ull z) (15)

then by S j2(u) = sup m(u,q) (16)
q E60

q

while by (15)

4m(u,q) - 3 Ilu-qlla - IlZqo-q-ullZ >. 0 (17)

For u in _ by lemma 6.1.
u

12(q 0-u0) (u 0-u) >. 0 (18)

and of course

11(2q0-q-u) " 3(u0-u)ll 2 > 0 (19)

Adding (17), (18) and (19) and rearranging

4m(u,q) > 3 Hu 0 " ql]2

taking sup o_er q in ¢aq, by(16)

2
4Jz (u) _ 3j o

Take inf over u in co
U

43,z > 33_

To show that the bound is the bes_ take the euclidean plane _or L,

let _Oq= {(0,0), (4,2_2)} co = ((a, 0): a_R), q0 = (2,_2), u 0 = (2,0)P U

Then J0 = 2_3 and J* = 3 while S, P and C all hold. QED
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A somewhat longer but illuminating alternative proof of

Theorem 6.5 proceeds in four steps. By S it is sufficient to

consider sets co consisting of Z points (or their convex hull,
q

a segment). By C it is sufficient to consider sets co which areu

closed half-spaces. By P it is then sufficient to consider the

problem in the plane through the two points, orthogonal to the

boundary of the half-space. After this reduction, the bound for

2 points and a half plane can be established by plane euclidean

geometry.

In some of the examples showing a bound to be the best in

Theorems 6 2 to 6.4, the suboptimal control u 0 is not uniquely

determined by (10). This lack of uniqueness can be removed by

minor changes (using an additional dimension if necessary) while

the ratio changes infinitesimally. Hence a uniqueness requirement

could at most lead to the statement of the bound with strict ineauality

for non-zero J*.

When co has no center of symmetry the next best assumption,
q

to replace S, is that q0 is an outcenter of coq, that is a point

at which J attains its minimum over L. In conjunction with the

basic assumption that q0 belongs to the closure of the convex hull

of co this leads to a best bound of 2 as for S. But without this
q

basic assumption the bound is 3 unless the unit ball in the quotient

space is assumed uniformly rotund. This subject is not pursued

because outcenters are hard to determine in practice.
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6.5 A BOUND FOR EXPECTED PERFORMANCE

The stochastic version of the single stage case is obtained

by assuming that q is a random vector with given distribution

on L and letting J(x) be the expectation of [lq'x[[.

Equation I0 and assumptions P and C retain their meaning.

The basic assumption q0 e_ and assumption S must be redefined.q

Let A be a _r-algebra on L such that pseudonorm is

measurable and aeA_ x_L imply x-a_A.

Let _ be a probability measure on (L, A) such that the ex-

pectation of !lqll is finite and for o in A.

_(a) = _(2q o- a)

that is, the probability measure is symmetric about qo"

Define J(x) = E l]x'ql[

Jo = J(u0)

J* -- i_ J(u)
U E_ u

Now we seek the smallest number a such that J0 --< aJ_

given that (10)p P, C and the stochastic form of the symmetry

assumption all hold.

First note that, un!ike supremum, expectation does not commute

with monotone increasing functions. Hence if k(x)= II xll 2 the

problem is entirely different. When P holds llxll 2 is a quadratic

form and if q0 is the mean of q
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milu-qllz llu-qollz = E llq -%llz
IJ.(q) IJ'(q)

Since the right-hand-side is independent of u, optimization against

the mean is optimal and J0 = J* when J is defined by

J(x) = E IIx-qll 2. But this does not hold for the norm itself.

Indeed one has

Theorem 6.6 Under the stochastic symmetry assumption

with P, C, (10)and J(x) = E ilx-qll, the
IJ.(q)

smallest number a such that J0 <_a J* is Z/Vr3

Proof (outline): By the stochastic symmetry assumption a bound

will hold if it holds for atomic measures as,igning equal weights

to two points. By C, a bound will hold if it holds for _ a closedu

half-space. By P it then suffices to consider the plane through

the two points orthogonal to the boundary of the half-space. In

this plane a bound of 2/4"3 can be shows to hold by elementary

geometry with a discussion of cases. To prove that this bound is

the best let L be the euclidean plane, _t the atomic measure

with equal weight at (0, 0) and (Z, ZVrZ), _ = {(a, 0): acR},
U

q0= (1,_Z), u0= (1,0). Then J*=Zvr3 and J0=4 whileall

assumptions are satisfied. QED

It is remarkable that this bound is the same as in the corresponding

case of guaranteed perform4nce (Theorem 6.5.). The underlying

reason for this equality is not clear as yet. !t may hinge on the fact

that R z with the t-1 norm and 1t2 with the I-co norm are not

only dual normed spaces but are also isometrically isomorphic.
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6.6 THE TWO-STAGE CASE

Consider a naive feedback controller (-/I,T2) for a two-stage

vector addition game dnd let (u01, u02 ) be the naive blind

controller corresponding to it by (6). Then the three numbers

JO' Jf' J* are in general distinct and satisfy J* < rain (JO' ffr).

Even under the strongest combination of assumptions :,_nsidered

so far (S, P and C) there is then no nontrivial bound involving if*.

Indeed one can have 3" = .TO = .If by letting C0q(1) and _q(2) be

singletons, and one has

Theorem 6.7 For two-stage problems satisfying assumptions

S, P and C or any weakening thereof the largest

numbers k0' kl' )'Z such that

xl )`z%<̀if
are

)`0 = )`1 = kZ = 0

Proof: The inequalities hold because pseudonorms are non-

negative. To prove that they are the best it suffices to give an

example for which 3* = 0 with -Tf > 0 and J0 > 0 and an example

with ,If= 0 and -TO> 0.

Let L be the real line with the absolute value norm. Let

_q(1) =" (- l,l), _)q(Z) = {0}, _u(1)- [- I, l])_u(Z) = [0,2],

Xo = qOl = qoz = TI(xO) = O'q'z(x) = (l+x)/Z.

Then if0 = ,If= 1 and ,l* ffi 0.
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Now modify this example by letting Tl(X0) = - I and

T2(x ) = l+x. Then J0 = I and Jf = 0. OED

Note that the remarks on uniqueness at the end of Section 6.4

apply also to the above examples.

In conclusion, the only non-trivial bound is of the type Jf<__aJ 0.

Intuition suggests that a = I that is, feedback, even naive,

cannot be worse than blind naive control. A lower value than I

is ruled out by the first example in Theorem 6.7. As we shall

see the best bounds under the combination of assumptions considered

already for the single stage case, are all greater than 1. The

meaning of this result is that a naive feedback controller can be

fooled, while a blind controller cannot. The best bound a under

given assumptions will be called the foolin 8 factor for these

as s umptions.

Theorem 6.8 In a two-stage problem, assume that ¢0u(2), ¢0q(2),

q02 a_¢t the pseudonorm satisfy one of the

combinations of assumptions required for the

single-stage data in any one of theorems 6.2, 3, 4 or 5.

Let a be the corresponding bound, that is

3,2,_f2 or 2/x/'3. Then Jf<a.T 0 in the two-stage

problem.

Proof: by (5) Jf = sup G(x 0 + 3,1(x0) - q)

q _¢q(I)

with G(x) = sup ]]x + ,rz(x)- qll
q e q(2)
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Also, interpreting (4) with the help of (6)

3 O = sup H(x0+Tl(X0) - q , x 0 + 3,1(Xo)- qo])

q e_q( I )

with H(x, _) = sup [Ix+_'2(_) - q H

q e_q(2)

since "y2(_) belongs to _u' we have for all x and

H(x,6) > i_ sup IIx+u-qll
--u e_u(2) qeC_q(2)

> _.x sup [I_ +"fz(X)- q[I
-- a q¢_Oq(2)

by the single-stage result, which applies because (2) and (3) imply

that (10) holds when x is considered the initia! state of a single-

stage problem with _Oq(2) and C0u(2 ) as constraint sets (and x

is taken as origin).

Thus

H(x,_) > 1 G(x)
-- G

in particular.

I G(xo+.y l(xo)_q )H(x 0+ 3'l(X o) - q, x 0 +_'l(X0) - qOl ) >__"

taking sup over q in _Oq in _Oq(l)

I

Jo _>g Jf
QED

Note that this bound is not claimed to be the best, but one has
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Theorem 6. q. For two-stage problems satisfying assumptions

S, P and C the fooling factor is 2/_-3.

Proof: The bound holds by Theorem 6.5 via Theorem 6.8. To

show that it is the best, let L be the euclidean plane.

_u(1) = {(0,0)}, %(Z)= {(a,O): a_R}, _Oq(1) = {(I,-,/'Z),(-I,,/-Z)},

COq(Z) = {(2,f2), (oZ, -,]'2)}, x 0 = qOl = qo2 ='Yl(xO ) = (0,0),

"yz(x) = orthogonal projection of x on COu(Z). Then ,Yf = Zf3,

J0 = J* = 3 while S, P and C hold. QED

Of course the fooling factor for weaker assumptions can only

be larger.

In the case of expected performance, Theorem 6.8 is valid

with supremum replaced by expectation throughout. For the

square of a quadratic norm the fooling factor is 1, this is essentially

the Wiener-Kalman-Bucy case with the degeneracy that the output

is the exact state vector. But for the norm itselfone has

Theorem 6. 10 For two-stage problems of expected performance

satisfying P, C and the stochastic form of S

the fooling factor is 2/f3.

Proof: The bound holds by Theorem 6.6 via the stochastic parall_.l

of Theorem 6.8. To show that it is the best, let L be the euclidean

plane. Let the _l and tt2 be independent and identical probability

measures for ql and qz' namely atomic measures with equal

weights at (I, _f2)and (- I, -_f2). Let ¢Ou(l) = {(0,0)}, COu(2) --

{(a,0): a _R}, x 0 = q01 = q02 =Vl(X0 ) = (0,0),"Y2(x)= orthogonal

projection of x on COu(Z). Then Jf = 2 and J0 = J* = vr3 while

all assumptions are satisfied. QED
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Again, under weaker assumptions the stochastic fooling

factor can only be larger.

6.7 THE MULTI-STAGE CASE

For the case of an arbitrary number n of stages littleis

n
known as yet. An exponential bound a on the fooling factor is

easily obtained but far too high. Note though that, for otherwise

fixed assumptions, the bound must be monotone in n because

any n-stage problem is equivalent to an (n+1)-3tage problem

with trivial first stage.

It is the asymptotic behavior of the fooling factor for large n

which is of the greatest interest. It seems that the factor goes to

infinitywith n. To obtain finitelimits one can make the assumption

that L has the finitedimension d. The limit for infinite n _.s

then finitefor fixed d and bounds on this limit have been found.

They go to infinitywith d.

Another question of considerable interest is the implication of

time invariance of the linear differential system from which the

vector addition game is derived. Finally, the continuous-time

case merits attention despite its much greater technical difficulty.

i_

l
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6.8 SOURCES

Some discussion of the differences between various suboptimal

design methods for uncertain systems may be found in Dreyfus [13]

who considers discrete-time problems and expected performance.

The mathematical background of the present chapter is

wholly elementary. In fact the proof of the 2/_3 bound, the least

trivial, is nothing more than plane euclidean geometry. For

the general mathematical background the introductory texts of

Simmons [50] and Royden [491 are far more than sufficient.

L
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