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ABSTRACT

The control of uncertain systems is considered as a decision problem.
Some general concepts, such as adaptivity, are analyzed in this light
and features common to many design methods are clarified. The
special case of worst-case, or minimax design, is considered in
more detail. The dynamic programming algorithm is discussed for

a class of linear problems with bounded perturbations, bounded con-
trol variables, and with sampled output of the state. A dual algo-
rithm using the support functions of reachable sets is proposed.
Bounds are obtained, relating the performance of optimal and sub-
optimal designs, when the criteria have the properties of norms.
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INTRODUCTION

Frequently, a controller for a plant must be designed in the
absence of a full, precise description of this plant; that is, in
the face of uncertainty. The selection of a design is then a special
case of the general problem -f decision under uncertainty.

In the first three chapters of the present work, ~ome of the
possible approaches to this problem are considered and their
implications in the control context are investigated. An attempt
is made to discuss each concept on the basis of the minimum of
structure required, uncluttered by irrelevant assumptions.

Only deterministic coatrollers, as opposed to random controllers,
are considered. The performance cf controllers is measured by
a "supercriterion'; for instance, the expectation of the nriginal
criterion ior given a-priori probabilities or its supremum for
given bounds on the unce.cda1n quantities. The latter cas: is that
of worst-case or minimax design.

Notions to which are givern. the names "optinzi'', "feedback"
and "adaptive'" can then be defined, and this Pffﬁf.:f. the introduction
of the notion of time. It is shown how optimization over open-loop
designs provides a-priori bounds for the improvement possible
by the use of adaptive controllers.

In Chapter III, some first steps towards a theory taking the
time factor into account are outlined. Rather than pursuing this

subject further in full generality, only a specialization is considered

viii
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more ureply: discrete-time systems with the minimax
definition of optimality. (It is to be noted that many continuous-
time systems with sampled outputs are reducible to discrete-
time form.) The solution of the corresponding optimization
problem is immediate in principle, by dynamic progr mming.

In the case of linear differential systems with sampled
output, the minimax optimization algorithm is best described
in terms of reachable sets under given constraints, In
Chapter IV, the formulas giving the support functions of such
reachable sets are derived., In Chapter V, the corresponding
dynamic programming algorithm is examined ‘n more detail,

A dual algorithm which appears to present some advantages is
proposed. Itis based on Fenchel's theory of conjugate convex
functions,

Since the computational effort for the determination of the
minimax design, as above, is considerable, it is tempting to
design on the assumption that all uncertain quantities are fixed
at nomiral values, Such a "naive'' design can be found by the
leas demanding algorithms for optimal control under certainty,
Both open and closed loop forms of the nuive design can be
considered. In Chapter VI the question of the relative merit of
the optimal and the various supoptimal controllers is posed.
Some inequalities which may begin to throw light on this question

are obtained, though further research on this topic is called for.
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In summary, the present work is of an exploratory nature.
One major advantage of the study of minimax design is the
absence of many of the existence problems that are common in
tiie stochastic approach. It is possible to concentrate at once
upon the physically or algorithmically relevant difficulties
created by the presence of uncertainty. In the end, it should be
possible to use any insight gained from minimax studies as a
guide in the investigation of alternative approaches. To some
degree such a cross-fertilization is exemplified by the bounds

on expectations mentioned in the last chapter.



CHAPTER 1

ON THE DECISION PROBLEM

1.1 DEFINITION OF THE DECISION PROBLEM
A decision problem consists of three non-empty sets D, N and O,
of a function M:D x N —+O, and a transitive relation < on O such

that between any two elements 0,0, of O at least one of o, < o

1 2

and o holds:

<o

2 1

D is the set of possible decisions or 'action space'.

N indexes the uncertainty of the problem and may be
called the set of ''states of nature', ( no relation

to the notion of state of dynamic systems).
O is the set of outcomes.

is the function which determines which outcome will

result for a given decision and state of nature.

The relation < defines our preference among the
outcomes. We take 'less'' to mean 'better' in
conformity with the control theory usage of min-
imization. Thus 0, < o, means that 0, is as
good or better than 0,-
1.2 NUMERICAL INDEXING OF OUTCOMES

Assume that we can assign to each element of O a real number
in such a way that the order between elements of O agrees with the

usual order of the corresponding numbers. That is, there exists a

function y:O =R with the property

V(OI)S-V(OZ) < o, < 0,

-la
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Then, if ¢ is any monotone increasing function the composition ¢ ° v
(defined by ¢(v(o)) ) has the same property. Thus the function v is
very far from unique.
For any choice of v as above we may define a function
W:Dx N™R by W = y eM,that is
W(d,n) = v(M(d,n))
The "payoff function' W suffers from the lack of uniqueness in-

herited from v .

1.3 THE CASE OF CERTAINTY
In case the set N has but one element (lacks entropy) the argu-
ment n of M and W becomes redundant. In this case of ""certainty"

consider the set

D,y = (deD:W(d) = inf W(D))

If it is not empty, its elements are the optimal decisions, because
no uetter outcomes can be obtained than those resulting from such a

decision. The set Do is independent of the particular choice of

pt
the function vy . Such is not the case for the set

D = {deD:W(d) < inf W(D) +€}, €> 0

to which one might turn for help in case Do is empty. For fixed €

pt
any decision d can be brought into D€ by appropriate choice of v .
Therefore, the set D€ is only useful if a particular function v and
a value of € can be agreed upon. Otherwise, we might as well

consider the set

Dys = {deD:W(d) < W(d%}

= {deD : M(d) < M(d¥)}



and attempt to agree upon the choice of d¥. This is clearly as

difficult as the original problem so that nothing has been gained.

1.4. PARTIAL ORDERING OF DECISIONS
Define a relationon D, i.e., among decisions by

d, < dZ%( V neN) M(d,n) < M(d,, n)

Then this relation is trausitive and the relation

-~ < <
d1 dz ®dl-—d2 and dZ-—dl

is an equivalence relation.

If we consider the relation < among equivalence classes of
decisions, then it is a partial order. On the set I itself itis a
partial order modulo equivalence. The set D¥ = {d*eD :( V deD)
d* <d } is usually empty. When it is not, then it is an equivalence
class and its members are optimal since decisions outside D* cannot
yield better outcomes, for any state of nature, than the outcome
resulting from a decision in D* for the same state of nature.
Decisions in D¥* are called dominant decisions.

In the absence of dominant decisions the partial order enables
only the definition of the (possibly empty) set Dm of minimal
controllers and of the collection gc of complete sets of controllers, by

D
m

{dmeD:( V deD)d < dm$ d_<d }

and

&

{DCC‘D:( VdeD) ( 3d_eD ) < d}
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When Dm is not empty and belongs to 3‘: then one may consider
the problem to be reduced to the selection of a decision in Dm
Indeed, in that case Dm is the smallest set such that for all decisions
in D there exists a better decision in Dm , in the sense of the
partial order.

Dm is sometimes called the set of '""admissible' or '"non-inferior"

decisions.

1.5. RULES OF CHOICE: HEDGED AND UNHEDGED

To select a decision on a rational rather than intuitive basis it is
necessary, in .the absence of dominant decisions, to agree on a rule
of choice. Such a rule should be compatible with the given preference
relation among the outcomes, hence with the partial order of D
defined above.

The rule of choice, unlike the preference relation among outcomes,
takes into account the presence of uncertainty of the state of nature
and possible a priori knowledge (such as probabilities) about this
uncertainty,

In practice there are two approaches: unhedged and hedged rules
of choice, Unhedged rules create an order among decisions, expressed
by assignment of a real (or extended real) number to each decision in
D. The situation becomes, then, the same as in the absence of
uncertainty (see Section 1.3).

Hedged rules randomize the decision process by specifying a
oc-algebra p> D of subsets of D and considering the new problem

of selecting an element of the set D of all probability measures of

Z p- The rule orders the set D by assignment of a real (or extended
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real) number to each element of B The situation becomes again

the same as in the absence of uncertainty but now with 13 as the

action space. If an element of D~, say E. is selected, the correspond-

ing action consists in the activation '"at the last minute' of a random

device which selects an element d of D according to the probability

measure d. This decision d is then made in the original problem.
When the set D is countable, the collection of all its subsets is

a natural and convenient choice of Zph - When the set D is not

countable, then Zp would be derived from the structure (usually

the topological structure) of D. Unfortunately, even the preliminary

step of agreeing on a topological structure for D is by no means

clear, Just consider the case where D is the set of '"all" nonlinear

feedback controllers for a given plant.

1.6 UTILITY

The rules of choice used in practice take account of the preference
ordering of outcomes by way of the numerical function v. Some rules
have the property that the resulting decisions (if some exist) remain
the same when v is replaced by ¢ « v as in Section 1.2 and the same
rule of choice is used. Most rules of choice, however, do not possess
this property and require agreement upon a specific choice of v,
the "utility function'.

In particular, agreement on a utility function is necessary when
expectations under probability measures are involved and also wher. a

concept of e-optimal decision is used.
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Axiomatic treatments of the establishment of the utility function
may be found in Von Neumann and Morgenstern and in Pratt, Raiffa
and Schlaiffer. Essentially, these authors show that if a set of
reasonable axioms is accepted, the existence of a unique utility
function follows. The axioms in question are essentially reasonable
but by no means compelling. The difficulty stems from the following
requirement of these axioms. Let a, b, ¢ be three outcomes with b
strictly preferable to a and c strictly preferable to b (and hence
to a). Consider the mixed outcome f(p) for 0< p< 1 which
consists in a probability p of outcome c¢ and probability (l1-p) of
outcome a, then it is required that there always exists a value p*
of p, with 0< p*¥< 1 such that outcomes b and f(p*) are equivalent.

This axiom fails to hold if a '""worst case' point of view is adopted.
Thus acceptance of the axioms rules out one of the most simple-minded
and logically consistent approaches to the decision problem,

In the sequel we will assume that a specific function y has been
selected. For each rule of choice it will be clear whether the results

are or are not invariant under monotone remapping of v into ¢ ¢ v.

1.7 REFORMULATION OF THE DECISION PROBLEM

Once the function v has beer. selected, a decision problem takes
the form (D, N, W) where D is the action space, N indexes the
uncertainty and W:DxN —R (or Re) defines the utility of the outcome

or at least the preference relation among outcomes,
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An unhedged rule of choice may now be defined as follows:

Definition: An unhedged rule of choice p is a function
which associates to each decision problem (D, N, W)
in a set P of problems (the domain of the rule) an
extended real valued function J = p(D, N, W) on
the set D of the argument problem and satisfies
(a) (V(D,N, W) ¢P) (le, dZ eD)

[(V neN) W(d,n) < W(d,,n)] =>3(d,) < J(d,)

where J = p(D,N, W)

(b) Let SD be the set of all mappings of the set D onto
itse which swap two elements of D and leave the others
unchanged. Then it is required that

(bl) (V(D,N,W)eP) (VoeS (D,N,Woo)eP

D)
(b2) (Vv(D,N,W)eP) (V o'eSD)
p(D,N,Woeo) = ocop(D,N, W)

Requirement (a) expresses the compatibility of p with the partial
ordering inherited from the outcome preferences, The symmetry
requirement (b) expresses the independence of the a-priori knowledge
of the state of nature, as embodied in the rule of choice, with respect
to the selection of a decision. We conjecture that every meaningful
problem can be cast into a form in which this independence is realized.

The function J obtained by the rule of choice may be called a

supercriterion to distinguish it from the function W which depends

on the uncertainty and corresponds to the usual concept of a criterion.
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A similar precise definition of the notion of hedged decision
rule would depend on whether the o-algebra on D is considered as
part of the problem data to which the rule is applied or is considered

to be selected by the rule.

1.8 VALUATIONS AND EVALUATORS
For a given decision problem (D, N, W) there corresponds to
each decision d a function on N, defined by W with d fixed.
Definition: The valuation of a decision d is the function

w(d, :):N —R(or Re). The value mapping V of

the decision problem (D, N, W) is the function which
associates to every element of D the corresponding
valuation,
The range V(D) of V is a subset of the set of all functions from
N to Re‘ Note that valuations are partially ordered by pointwise
inequality and that this partial order is precisely the one which defines
the partial order of the corresponding decisions,
An important special class of unhedged rules of choice is the class
of evaluators, that is rules assigning a number to a decision solely
on the basis of the corresponding valuation. The supremum of the
valuation and its expectation under 4 given probability measure are
prime examples of evaluators,
Definition: A function C:.Q(C)--Re is an evaluator if (a) the
domain @ (C) consists of pairs (N, ¢) where N is
a nonempty set and ¢ a function from this set into

R (or Re)'
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(1) Whenever (N,¢l) and (N, ¢2) belong to .,9(C)
and (Vn €N)é,(n) < ¢,(n), that is, ¢,< ¢, in

the partial order, then C(N.¢l) < C(N, ¢Z).

When a fixed N is under discussion, the first argument N of C
is redundant and need not be written. In that case of fixed N the
domain of C is a set oB(C) of functions from N into R or Re'

An evaluator C is applicable to a decision problem (D, N, W)
if all valuations (N, V(d)) are in the domain of C. For fixed N this
requirement reads V(D)cH(C). When an evaluator is applicable to
a decision problem the function J:D -~Re defined by J(d) = C(N, V(d))
is the corresponding supercriterion. The rule of choice is to select

decisions, if some exist, which minimize J.

1.9 THE GUARANTEED PERFORMANCE EVALUATOR
The pessimistic decision maker will consider the worst case re-
sulting from each decision. This amounts to the use of the guaranteed

performance evaluator, defined for any pair (N, ¢) by

C(N, ¢) = sup ¢(n)
neN

One technical advantage of this evaluator is that it is applicable to
every decision problem. Note that it is not necessary that the
suprermnum be a maximum, the '"'worst case'" need not exist. One has
J(d) = sup- W(d,n).

neN
The study of this evaluator is motivated by the desire to assess in

advance what can happen when a given decision is selected, on any

basis whatsoev?!). On=< would then compute the guaranteed performance
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for that decision. It appears worthwhile to have a standard of
co.nparison for the number so obtained, and the best guaranteed

performance,

inf sup W(d,n) = inf J(d)
deD neN deD

is eminently suitable as such., The determination of this quantity
amounts to considering the decision problem from the point of view
of optimizing guaranteed performance,

The guaranteed perfor.nance J(d) may very well turn out to be
independent of d. This is likely if the outcomes are ordered into
just two equivalence classes (success and failure) with the function v
taking only two values, If for each decision there is at least one state
of nature leading to failure J will be constant. Another possibility
is that J be constant with the value + o because V(d) is unbounded
for each d. Since extremization commutes with monotone functions,
cptimality for guaranteed performance is independent of the selection

of the utility function v,

1,10 EXPECTED PERFORMANCE EVALUATORS

For fixed set N, an expected performance evaluator C is defined
by a r-algebra on N and a probability measure pu on this g-algebra,
The domain & (C) is the set of p-integrable functions on N, augmented

by the functions having +® or -oo as p-integral. The definition

is Clo) = [ \d(n) duln) « JE, Hm.
n
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The applicability of such an evaluator to the problem (D, N, W)
must be carefully checked in each case, If applicab'c, the super-
criterion is

J(d) = F W(d4,n)
u{n)

and the rule of choice is to selent decisicns minimizing J, if some
exist. The optimal performance is

inf K w{d, nj
deD p(n)

1.11 GUARANTEED EXPECTED PERFORMANCE EVALUATORS
There may be a set of probability mneasures 2 a ¢2mmon o-algebra
on N, one such measure M, for each element a of the index set A,

Then one may define an evaluator, for fixed N, by

C{é) = sup E é(n)
ae A p_(n)

The domain 8 (C) consists of the functions $ wbkich are o integrable
for each aeA, with the values o allawed,

In that case the super-.riterion is

J(d) = sup E W(«, n)
acA p.a(n)

and the optimal guaranteed expected performance is given by the

expression



-12-

inf  sup E w(d, n)
deD a€A ", (n)

The rule of choice is to select decisions for which this infimum is
attained, if some exist,

We note that the two previously considered types of evaluators
are special cases of the present one. Expected performance corresponds
to the case where A consists of a single element. Guaranteed per-
form;;lce is obtained by letting the ¢ -algebra be that of all subsets
of N and by taking A= N with R the atomic measure with unit
weight at point n.

It is only in the latter case of guaranteed performance that the
rule of choice is independent of the selection of the utility function v,
This advantage of the guaranteed performance evaluator is lost when

it is used as a basis for numerical comparison of decisions and also,

of course,when e¢-optimal guaranteed performance is considered.

1.12 THE INTERCHANGE INEQUALITY, OPVALUE AND LOPVALUE
The set of all extended real-valued functions on N is a complete

lattice under the partial order induced by pointwise inequality.

(Every subset of such functions has an infimum and supremum under

the partial order.)

Given a decision problem (D,N, W) define its minimal valuation

¥m PY

6 = inf  V(d)
M deD

that is ¢m(n) = inf W(d,n)
de D

An evaluator C is completely applicable to a decision problem

T T M e —~ s o —— - -
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if it is applicable and, in addition, the minimal valuation belongs
to the domain o (0.

Note that guaranteed performance is completely applicable to
any decision problem.

If an evaluator C is applicable to (D, N, W) then we define the
corresponding opvalue (optimum value) as the extended real number.

v = inf C(V(d))
deD

If C is completely applicable then we can also define the lopvalue

(lower optimum value) as
v' = Clo_)

where L3 is the minimal valuation of the problem.

In that case, we have the interchange inequality:

vi < v

Proof: By definition of the minimal valuation
<
(vdeD) ¢_ < V(d)
under the partial order.
By definition of an evaluator and by the assumption of complete ap-
plicability, this implies

(vdeD)  Clp_) < C(V(d))

Taking the infinum over all d in D,

Clpgy) < ot CIV()

or
vi< v

as claimed. The case where v = v' is called the zero gap situation,
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When v > v' the positive extended real number v - v' is uniquely
defined and is called the gap.

For a given decision problem the opvalue , lopvalue and gap all
depend on the evaluator used.

The interpretation of the gap is the following. If the decision must
be made in the assumed way, the value of the evaluator cannot be reduced
below the opvalue v. If, on the other hand, the problem is changed
to one in which the actual value of n will be made available shortly
before the decision must be selected, so that the decision can be taken
under conditions of certainty, then before the value of n becomes
known, there is still uncertainty as to the results but it can be asserted
that the value of the evaluator can now be reduced no lower than the
lopvalue. In a zero-gap situation the effect of '"'spying' is nil as far
as the value of the evaluator is concerned. If the gap is positive it

represents the value of '"'spying'" in terms of the evaluator.

1.13 RELATION TO GAME THEORY

The zero gap situation for the guaranteed performance is known
in game theory as the case of a pure value. When the gap is positive,
game-theory recommends the use of hedged rules of choice, It
abandons the guaranteed performance in favor of a merely expected
performance whose value is numerically more favorable, despite the
fact that the guaranteed performance under the h..iged optimal decision
procedure may be worse than the guaranteed performance of some un-

hedged decisions,

Gl o - - =Y ra — ————— - — -
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EXAMPLE: Consider the game with payoff matrix

p v

a 2 2 -1
b 5 -4 -10
-4 -1 8

The minimizing player chooses among a, b, ¢ and the maximizing
player among a, B, v.

The pessimistic strategy is to select the strategy for which the
worst possible result is as good as possible. This is a for one
player a or B (select a) for the other player. The optimistic
strategy is the one which would bring the greatest reward if one were
able to direct the opponent's move, Here b and 7y are optimistic.
The most dangerous strategy is the one the opponent wishes for if
he is playing his optimistic strategy. Here c and ¥y are the most
dangerous. The equal probability strategy selects at random among
abc or apy with probabilities 1/3,

The Von Neumann strategy is the one which gives a saddle-point
for the expectation of the payoff. Here its probabilities are (0, -g-, -3-)
for the minimizing player and (—g-, 0, -31-) for his opponent, Finally
the maximizing player might be following Murphy's law:* he plays
o against a and b, ¥ against c regardless how the selection of
a, b, or ¢ was made,

The values or expectations of the resulting payoff are tabulated

below for various combinations of these strategies.

* Murphy's law: anything that can go wrong,will,
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(a) most dg.

pess. opt. = prob VN Murphy guarantee
pessimistic 2 -1 1 1 2 2
optimistic 5 -10 -3 0 5 5
most dangerous -4 8 1 0 8 8
= prob, 1 -1 -1/3 +1/3 5 8
V.N. 0 0 -1/9 0 6-2/3 8

The calculation of the payoff against Murphy is the expectation of the
payoff with respect to the probabilities of a,b,c. The ""guarantee"

is obtained by applying Murphy's law to the minimizing player§s chance
device: consider the worst selection among those with positive
probability.

It should be clear from this example that no randomized strategy
can give a guarantee lower than that obtained by the pessimistic
strategy, i.e., the upper value of the game.

In particular, the Von Neumann strategy is not optimal in the sense
of guaranteed performance. To clarify this apparent contradiction,
distinguish two cases,

Case I: The decision maker (the minimizing player) decides, for
reasons which need not concern us, to be able to guarantee the results
and therefore uses the guaranteed performance evaluator to assess any
type of decision, hedged or unhedged. In this case he can under no
circumstances obtain a guarantee better than the opvalue of the
guaranteed performance evaluator. If the gap is positive the hedging
procedure suggested by game theory, which may yield a better expected

performance, is definitely incorrect and he must avoid it.

NPT M H g : - wowy Wy P —— —
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Case II: The decision maker considers a or-algebra over N
and accepts his ignorance as to the probability measure in force.

The set A is now the set of all probability measures over the
o-algebra, He chooses the guaranteed expected performance as
evaluator to select unhedged decisions. Then, assuming the technical
difficulties of integrability are resolved, he necessarily obtains the
same opvalue as for the guaranteed performance evaluator. Indeed,
the set A contains in particular the atomic measures with unit weight
at a point n. Thus the guaranteed expected performance can not be
lower than the guaranteed performance. The opposite inequality is
due to the fact that expectation is order-preserving, and we must have
equality,

Now the possibility exists that a hedged decision give a better
guaranteed expected performance than the opvalue for unhedged
decisions. This improvement is precisely what game theory accomplishes
and he should avail himself of the possibility, The point is that by
choosing guaranteed expected performance he declared himself content
with a mere expectation and if such is the case hedging can often yield

an improvement,

1.14 CERTAINTY EQUIVALENCE AND WALD'S DECISION THEORY
The zero-gap situation for expected performance is also known

as certainty equivalence, and is expressed by

inf E W(d,n) = E inf W(d,n)
d €D p(n) p(n) deD

Note that in game theory the interchange of extremization with ex-

pectation is never considered. This is because the ''spying" of game

ARt * o re
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thecry is directed against a human opponent. Random devices are
considered spy-proof. In the context of control, with nature as
""opponent'!, spying is accomplished by an increase of the measurements
taken and this can be done in a situation described by probabilities.
For the case of guaranteed expected performance with a set A
of probability measures p, over N the same difference of point
of view between game theory and the evaluator approach is
encountered.
The opvalue v is defined by

v = inf  sup E Ww(d, n)
'eD ae A p.a(n)

The lopvalue v' by

vl = sup E inf w(d, n)
acA p.a(n) deD

Define v' the '"game-theoretic lower value' by

v' = sup inf E Ww(d, n)
aeA deD pa(n)

Consider a game in which the minimizing player chooses d in D,
his opponent chooses a in A and the payoff is

W*(d,a) = E W(d, n)
K, (n)

For this game, dencted by (D, A, W¥), the game-theoretic upper
value is v and the lower value v'.
By the interchange inequality we have
v > v >y
Therefore the zero-gap situation v = v! implies that the game has

a pure value v = v!' but the converse is false,

IeeT TR by g — | PO ———— ———
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Wald's statistical decision theory amounts to the following:

if v = v"" guaranteed expected performance is the rule
of choice (whether or not v'' = v!')
if v > v'" switch to hedged decisions according to the

usual game-theoretic procedure applied to (D, A, W*)

Our point of view is different: v repre.ents the limit on the
performance possible in the given problem, as judged by the
evaluator; v' represents the limit for the modified problem, in
which '"spying'' allows one to make the decision as a function of n,
as judged by the evaluator before the value of n becomes known;

v'' has no special significance.

iI.15 SOURCES

Game-theory, utility theory and their relation to decision
making were first clarified by Von Neumann and Morgenstern [58] .*

A broad application of game- . heory to statistical decision
making was then proposed by wald [59].

In view of some objections to the pessimism of game theory,
when the opponent is nature, a great deal of effort went into the
axiomatic study of decision making; see the bcoks by Blackwell
and Girshick [10], by Thrall et al. (especially the section by
M.ilnor [55]), by Luce and Raiffa [38].

In more recent times favor has gone to the approach in which
a fn‘iori probabilities are estimated, however roughly, and the

expectation of utility is used as supercriterion. A strong argument

*Numbers in [ ] refer to numbered items in the bibliography.
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for this procedure can be found in Pratt, Raiffa and
Schlaifer [47].

Consider the following statement: '""There is no way to avoid
having to make a decision as to the rules by which decisions are
to be made.' Itis a shocking statement because of its
circularity. One may saythat decision theory was developed
in an attempt to '"disprove' this statement but ended up by
""proving' it.

Sometimes the only uncertainty in a decision problem is
the choice of the preference relation among the outcomes.
Formally this is just a special case: the competing preference
relations are indexed by the set N. The problem of vector-valued

criteria (see Zadeh [64] ) is of this nature,




CHAPTER II
UNCERTAIN CONTROL PROBLEMS

2.1 INTRODUCTION

The distinction between '"plant' and '"controller' is in many
ways an artificial one. For example, the compounding of d.c.
generators may be viewed either as an improvement of design of
the plant or as a form of feedback control.

The interest in a clear-cut distinction between plant and con-
troller hag been reinforced by the advent of the computer, ‘1he
plant is now taken as some process with actuators accepting inputs
in computer signal form (analog or digital) and with sensors providing
outputs in the same form. The actuators and sensors are considered
part of the plant, The controller is viewed as an on-line computer,
with a program, which makes the actuator input signals some function
of the sensor output signals,

The uncertainties as to the behavior of the plant, as to the demands
that will be made of it and as to the operation of actuators and sensors
are all considered as uncertainties of the plant. The controllers
under consideration are defined by those operators from sensor outputs
to actuator inputs which can be realized with negligible error and un-
certainty by the available data processing equipment.

In this view two problems arise:

Problem I: Assuming the plant to be already designed, or given
by nature, find a controller such that the system will

give satisfactory performance in some sense,

~21-
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Ideally, the design of a plant, including the choice of actuators
and sensors, should take the need for control into account. When
faced with the total design task, one needs to consider:

Problem II: How do the solutions of problem I, and especially the
attainable performance, depend on design parameters
of the plant?
At least abstractly, the total design task reduces to a problem of the
first type. One need only consider the controller as setting the values
of the design parameters at the beginning of the process. The corre-
sponding actuator is the builder of the plant, Note that what distinguishes
design parameters is that t':hey must be fixed at the outset and can not
be changed during the process under consideration, they are thus

equivalent to adjustable initial conditions,

2.2 THE NEED FOR PRECISION

In this chapter and the one following we state our point of view on
uncertain control systems in a precise mathematical fashion. Thus
specific definitions are given to terms that have been used with many
loose meanings and will certainly continue to be so used. Also a
large number of new terms are intrcduced.

We want to state explicitly that these definitions are not considered
to be the only suitable ones, It is clear that loose notions as crucial
as 'feedback', ''adaptive'", "optimal', etc., can be made precise
in many different ways, according to particular points of view. What
is inadmissible, and leads to fallacies, is to use these notions as if
they were precise without giving a definition,

Let us point out what the definition of a property must do. It
must precisely state the class of objects under consideration and it

must provide an unambiguous test to decide whether an cbject in the

T CES TR M —— - -—-
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class does or does not have the property. In other words it must

specify a set and a partition of this set ir.to two complementary

subsets,

Many statements about general control notions are not definitions

in the above sense or else are vitiated by extraneous assumptions,

such as linearity,

The need for extreme precision is best illustrated by listing a

few statements which, from rur point of view, are fallacious.

Fallacies:

I,

2,

F eedback is a property of certain controllers,

Feedback is a property that a control system may possess
in the absence of any uncertainty.

A control system is adaptive if it consists of a plant, a
controller which applies inputs to the actuators dependent on
sensor outputs and a '"'supervisor' which chanrges the
structure of the controller in a way dependent on sensor
outputs,

Filtering, estimation or identification problems can not

be considered as control problems.

A controller for an uncertain plant should always consist
of two independently designable parts: (1) an identifier or
estimator which determines the value pf the uncertain
quantities and (2) a controller designed without taking

uncertainty into account,
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6. Suppose a plant is operated in the morning for identi-
fication and in the afternoon for business. Then, a) the
problem as to what to do in the morning may be treated as
a separate problem, the results of which are then used
to solve the problem of operation in the afternoon.

b) the entire day's operation is something beyond a
control problem.

7. The synthesis of optimal control in feedback form is

always at least as good as the open-loop optimal control.

It wi 1 turn out that the most basic concepts can be defined in-
dependently of the notion of time and therefore of the notion of state.
Full advantage is taken of this fact since it is inadvisable to use any
unnecessary notions in basic definitions. The crucial role which
time will play later on is due to the simplifications that result from
the use of state concepts. With the introduction of time new compli-

cations will arise, These matters will be examined in Chapter III.

2.3 PLANTS

Definition 2.1 A plant is an ordered quadruple (U,Q, Y,S) in

which U,Q and Y are nonempty sets and

S:UxQ—Y.

U is called the input set, Q the uncertainty set,

Y the output set and S the system function.

Elements of U are called inputs, elements of Y

outputs, elements of Q uncertainties,

TYTIRRRET TR TR RS . —— e
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Definition 2.2 The effective output set of the plant (U,Q,Y,S)

is the subset S(U,Q) of Y.

Definition 2. 3 A determinate plant is a plant whose uncertainty

set is a singleton (a set with just one member).

Definition 2.4 A filter plant is a piant whose system function is

independent of its first argument (the input).

Definition 2.5 A mute plant is a plant whose system function is

independent of its second argument (the uncertainty).

Definition 2.6 An outputless plant is a mute plant which is also
a filter plant (i.e., the effective output set is a
singleton).

Definition 2.7 An inputless plant is a plant whose input set is a

singleton.

Filter plants are so named because they arise in filtering problems
considered as control problems. Mute plants are so named because
their output tells nothing about the uncertainty. Clearly, every
determinate plant is mute, since there is nothing to tell.

If A is a nonempty setand f:UxQ x Y —A a function arising
in the study of a plant (U, Q,Y,S), then f may always be reduced to
a function g:U xQ —A by defining g(u, q) = f(u, q, S(u, q)).

Since the variables u and y are externally accessible, functions
expressible.in terms of these variables only have special significance.

Definition 2.8 A function g:U x Q —-A is an external function for

the plant (U,Q,Y,S) iff

(vueU) (Vv 9. qZGQ) S(u, ql) = S(u, qZ) $f(uaql)=£(“%)
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This is the necessary and sufficient condition for the existence
of a function h:U x Y—-A such that g(u, q) = h(u, S(u, q)).

Then the restriction of h to the set {(u, S(u,q))| uelU, qeQ}=UxY
is unique and the values of h on the complement of this set are im-

material.

2,4 CONTROL SYSTEMS AND FEEDBACK

Definition 2.9 The set I(P) of all controllers for plant P is

the set of all functions 4:Y—U which have the
property that for each fixed q in Q the equation
u = ¥(S(u, q)) has one and only one solution (depen-

dent on q) for u.

In any control problem a subset "< I(P) is given: the set of
all controllers under consideration, The definition of T will take
into account causality and any other practical limitations.

If ¥ is in 1(P) then the simultaneous equations

y = S(u,q)
u = q(y)

have exactly one solution for u and y, dependent on q, for eaci

fixed q in Q.

Definition 2,10 A control system is a pair (P,y) where P is

a plant and ¥ a controller for P.

Definition 2,11 The loop function of control system (P,vy) is

the function L‘Y:UxQ- U defined by Ly(u, q)=v(S(u, q))

Definition 2, 12 The input mapping of control system (P,¥) is the

function m‘Y:Q-U which maps q into the solution

TR e R R ] e o YD, e, — e
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my(q) of the equation u = Ly(u.q)

Consequently m7(q)5 L_y(m'y(q), q) = 7(S(m7(q), q)) holds for all
q in Q and v in 1(P), by definition,
The next step is to make precise the notion of feedback.

Definition 2,13 A controller vy for a plant P is blind if ¥

is a constant function. It is effectively blind

if 4 is constant on the effective output set of P.

A blind controller 4 is completely defined by the constant
value u of 9(y). By '"'the blind controller u' is meant the controller
v with q(y)=u for all y in Y. The input set U may thus also
be called the set of all blind controllers for P, When considered
as such, U is always a subset of 1({P), which proves that T(P)
is never empty.

Definition 2, 14 (P,v) is an open-loop control system if its input

mapping is constant, otherwise it is a feedback

control system,

Note that a control system may be open-loop even for a con-
troller 4 which is not (eifectively) blind. It may for instance,
happen that changes in q produce changes in y insufficient to bring
v(y) out of a dead-zone. The system is open loop when ¥ is constant
on the set {S(m‘Y(q), q)eY:qeQ} and then the set m,y(Q) is a singleton.

An immediate consequence cf definition 2, 14 is
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Theorem 2.1 If a control system (P,7vy) satisfies one or

more of the tollowing 3 conditions:

(1) P is inputless

(2) P is mute (a fortiori: outputless or
determinate)

(3) v is effectively blind (a fortiori: blind)

then it is an open-loop control system.

Thus there is no such thing as a determinate feedback control
system. It is only for certain special types of plant that the only
way to obtain an open-loop control system is to choose v effectively

blind.

Theorem 2.2 If a plant P has the property that the set

Y = {S(u, q)eY:qeQ} is independent of u and
if the control system (P,7vy) is open loop, then

v is effectively blind.

Proof: Since (P,v) is open loop my(q) is constant with some

value u*, This implies that ¥(y) = u* for all y in the set Yu*'

But, by assumption, Yu is independent of u, so that Yu* =

U Y, = S(U, Q) the effective output set. Thus ¥ is constant on

ttllfitsl set, hence effectively blind. Q.E.D.
An application of this case is given in

Theorem 2,3 If P is a filter plant and (P,¥) is open-loop

then ¥ is effectively blind.
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Proof: Filter plants trivially satisfy the assumption of theorem 2. 2.

Q.E.D.

As illustration, consider the case of a tracking servo. Then
the set U is the set of all time functions describing possible input
signals to the power chain, the set Q is the set of all time functions
that the servo may be called upon to track, the set Y consists of
pairs: an element of Q is paired with a time function that may
be received from the servo output sensors,

Since the first component of an element yeY is directly
determined by qeQ and the second component is a known function
of ueU (assuming no uncertainty in the power chain), the mapping S
is well defined. Since time plays a role one is restricted to the use
of physically realizable (i.e., non-predictive) controllers
7:Y—U and there may be many other restrictions. But there is no
magic reason why the controller ¥ should depend only on the difference
called error.

If the subtraction is carried out in the plant and Y is the set of
error time functions one can reconstitute the two terms of the sub-
traction as long as tihe power chain is perfectly known. If, on the
other hand, the power chain is uncertain also, say because of noise,
then Q is a subset of the cartesian product of the set of all time
functions to be tracked and the set of all noise time-functions, Now
there is a genuine loss if the controller receives only the error signal,
Indeed, every realizable 4 dependent on the error signal only is

realizable if both terms of the subtraction are received but no longer
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vice-versa, and it can never be harmful to have a choice over

a larger set of possible controllers,

2.5 VALUED PLANTS AND CONTROL PROBLEMS

Definition 2. 15 A valued plant is a pair (P,K) where

P=(U,Q,Y,S) is a plantand K:UxQ —’Re
is a function, the cost function or criterion
cf the valued plant,
The value of K(u,q) is interpreted as a cost so that K(“l’ ql) <
K(uz, qz) means that (ul,ql) leads tc a result preferable to
(uy, 95).
The extended real line Re is used because
a) real valued criteria are included as a special case.
b) R, is closed under supremum while R is not,
c) it may sometimes be convenient to introduce constraints
by letting K(u,q) be infinite when (u,q) leads to violation
of constraints,

Definition 2, 16 A control problem (P,K, 1) is a valued plant

(P, K) together with a subset 1 of the set I(P)
»f all controllers for plant P,

Definition 2.17 A valued control system (P, K, 7o) is a valued

plant (P, K) together with a controller vy for P,

Thus a control problem is equivalent to a set of valued control

systems with the same valued plant.
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Definition 2, 18 * The payoff function of a control problem (P, K, I)

is the function W:I'x Q ——Re defined by W(y,q) =
K(m,y(q),q) where m7 is the input mapping of
(P,v). W is the restrictionto I xQ of the payoff
function of (P,K, T (P)) which is called the payoff

function of the valued plant (P, K).

2.6 DECISION BY EVALUATORS
The control problem (P,K,T) can be cast in the form of a
decision problem (T, Q, W) where T is the set (formerly called D)
of possible decisions and Q the set (formerly called N) of possible
""'gtates of nature',
Accordingly, by Chapter I, one has the following notions:
a) valuations are functions from Q into Re'
b) the value mapping V associates a valuation to each
element of X V(y) = W(y, * ),
c) valuations are partially ordered by pointwise inequality
and this defines equivalence and partial order among the
elements of T,

d) the minimal valuation b, is defined by

o _(q) = inf W(y,q)
m YeI

e) evaluators, their applicability and complete applicability
to a control prcblem are defined,
f) the opvalue v and lopvalue v' of control problem

(P,K, ) with evaluator C (assumed completely applicable)

The cost of implementing controller 7 is neglected, otherwise it
would have to be included in the definition of W.
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are given by

v = inf C(V(v))
YeT'

LI
v' = Clo)
and satisfy v' < v (the interchange inequality).

Definition 2,19 A valuation ¢ on the uncertainty set Q of a

plant P is a blind valuation if there exists a

blind controller u for P such that V(u) = ¢

With this notion the motivation behind the definition of feedback
comes to the fore:

Theorem 2.4 If the control system (P,y) is open-loop and K

is any criterion for P then the valuation of
(P,K,v) is blind.
Proof: Definition 2.19 is satisfied by letting u be the constant

value of the input mapping of (P,7). Q.E.D.

A first definition for a notion of adaptivity can now be given,
Definition 2,20 The valued control system (P,K,v) is strictly

adaptive if 1ts valuation is strictly less (in the

partial order of valuations) than any blind
valuation of (P,K);

This means that for all u in U

a) K(m,(q), q) <K(u,q) V qeQ

b) (3qeQ) K(m_(a)ha) < K(u, q)

this q depending of course, upon u.

vopr P .
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This definition is a first attempt to make precise the
following idea: a valued control system is adaptive if it uses
feedback to advantage, When, as in definition 2,20, the word
"advantage'' is defined by the partial crder, the requirement so
expressed is far too strong to be met by non-trivial systems,

Indeed one has

Theorem 2.5 If the valued control syste.n (P,K,v*) with

value mapping V is strictly adaptive, then
a) (P,v*) is a feedback control system

b) V(y*) = inf V(r(P)), thatis v *

is dominant in (P) and, a fortiori, in any

subset I" containing ¥,

Proof: a)By definition 2,20 the valuation of (P, K, y*) is not blind
and by Theorem 2.4 this implies that (P,v*) is not open-loop,

hence it is feedback.

b) If 'y is any controller for P then, for all q in Q

K(m.r(Q)o q) > inf K(u,q)
uelU

because my(q) belongs to U. Therefore V(y) > inf V(U) in the
partial order. Taking the infimum over ¥4 in T1(P)

inf V(r(P)) > inf V(U)
But the opposite inequality must hold because U is a subset of
r(P). Hence

inf V(D(P)) = inf V(U) = &,
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where b, is the common minimal valuation of the control
problems (P,K,U) and (P,K,T’(P)). The claim is that
V(v*) = ¢ and this follows from the fa-t that V(y*) > inf V(r(P))
because v*ei"(P) while, by definition 2,20, V(y*) < inf V(U).
QED

An example of a strictly adaptive system is the following:
Consider a classical optimal control problem in which the oaly
uncertainty is in the values of thz initial conditions., Suppose these
initial conditions are available as output 7 ™ e baginning of the
control process, Then the designer will first find the optimum
control for each possible initial ccndition and design a device which
applies, as a function of the measured initial condition, the corres-
ponding optimal control. Since no other uncertainty is present, it
is immaterial whether this is done by the rapid selection of a
time function, which is then blindly applied, or by continuous
feedback methods. If at least one pair of possible initial conditions
have no common optimal control, then such a design is strictly
adaptive.

In the next section, our basic idea of adaptivity is made
precise in a weaker but far more practical sense, Instead of
defining advantage by the partial order, an evaluator is used.
With that type of definition most controllers presently used are

adaptive. The realization of adaptivity is the reason for the use of

T ey -ty — e ks RN s w—
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feedback and thus dates back at least to Watt's regulator. The
notion that '"adaptive controllers' constitute a breakthrough to
a new level of the control art appears entirely mistaken, Only
a matter of degree is involved, The strength of '. ‘odern' ccntrol
theory is that it takes uncertainty, constraints and nonlinearity
into account and uses the power of the computer (on-line and
off-line) to achieve, sometimes, an improvement in performance,
The idea of ""learning'' is nothing more than feedback, in the case
where U and Y contain functions of time,

It goes without saying that the word "adaptive' could be defined
in quite different ways, and a number of such proposals have been

made. It seems to us that the definition should

a) be independent of all structural assumptions,
b) take the measure of performance into account, and

c) be closely related to the notion of feedback.

These desiderata are taken as a guideline throughout the present

chapter.
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2.7 OPTIMIZATION WITH RESPECT TO EVALUATORS
AND ADAPTIVITY

When the evaluator C is applicable to the control problem
(P, K, ) with value mapping V, the cor~esponding supercriterion J:
r —vRe is defined by
J(y) = C{V(v))
The opvalue v is then given as

v = inf T{y)
YeT

and the optimal controller set I'* is defined by
™~ = {yer:J(v) = v}
Elements of T* are calied optimal controllers,
Taking account of the partial order on I we have

Theorem 2.6 The following five cases are mutually exclusive

and cxhaustive,

1. T™* contains a dominant controller ¥,
That is V(y*)< V(y) for all ¥ in T,

2. TI* contains a complete subset T** of mi imal
eiements, and I** contains at least one pair
of non-equivalent controllers, (11 is equi-
valent to v, if V('yl) = V(‘yz)).

3. I* is not empty, its set of minirmal elements
is nct complete,

4, 1* is empty and v is finite. Then for

[
€ > 0 the set T, < {ve ~J(v) _<_v+e} is infinite.

T TR A YT e PR T T




-37-

5. I'* is empty and v = - . Then for all
real a the set T = {yer:J(v) <a} is
infinite,

Proof: A consequence of the definitions, just note that v = + oo
implies that r#* is non-empty,

Discussion: In case (1) of theorem 2.6 the problem may be
considered as solved. In the other cases it is reduced to one of the
following:

Case (2): (P, K, T**),

Case (3): (P,K,r*) or (P,K, rc) with T, complete in T*,
Case (4): (P, K,r‘e) for some ¢ > 0,

Case (5): (P, K, en) for some real a.

This new problem may be (urther reduced by the use of a new

evaluator C2 different from C and this p
L | I

C is the primary evaluator C2 the secondary evaluator, etc,...

{pcesf may be repeated.

Evaluator-based definition of adaptivity:

Definition 2,21 Let C be an evaluator applicable tc the control

problem (P,K,r) and let v be an element of T.
Then the valued control systex::?s (P,K,¥) is quasi-
adaptive with respect to T and‘ C iff for all Yo
in T,

(P,74) is open-loop =, T(vy)> J(v). Itis
adaptive with respect to I and C if this holds
with strict inequality.

Note that when I" contains U then (P,K,?) is (quasi-) adaptive

iff (V ueU) Ju) > ) J(v)
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The idea expressed by definition 2,21 is the same as before:
the adaptive system uses feedback to advantage,

This definition can easily be extended to supercriteria which
are not derived from evaluators, for instance to the minimum

regret supercriterion

J(¥) = sup (W(v,q) - inf W', q))
qeQ Y'er

Theorem 2,7 Let C be an evaluator applicable to control

problem (P,K,T) and 4 an element of T.

Then if (P,K,v) is strictly adaptive, it is

quasi-adaptive wi.h respectto T and C.
Proof: Let V be the vaiue mapping of (P,K). Let Toe T be such
that (P,'yo) is open loop. Then by theorem 2. 4,the valuation V('yo)
is blind. Since (P,K,) is strictly adaptive V(y)< V(‘yo). By

definition of an evaluator J(y) = C(V(y)) < J(‘yo) = C(V('yo)). Thus

definition 2.21 is satisfied. Q.E.D.
Theorem 2,8 Let C be an evaluator applicable to (P, K,T)

and v an element of T. Then, if (P,K,v) is
adaptive with respect to I" and C, the control
system (P,v) is feedback.
Proof: If (P,y) were open-loop, definition 2.21 would require
J(¥) < J(y), a contradiction. Q.E.D.
Four properties: Feedback, strictly adaptive, quasi-adaptive and
adaptive have been introduced. Among them there are 12 possible

implications. Of these, exactly 4 are true, symbolized by the diagram
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- adaptive

feedback /

strictly adaptive

quasi-adaptive

2.8 GAP REDUCTION BY EXTENSION

In most cases the opvalue of a control problem is greater than
the lopvalue. The gap can be reduced by '"'spying' and in the control
context this means an increase in feedback possibilities due to added
senscr instrumentation and more powerful control computers. This

pro-ess will now be studied in some detail.

Definition 2,22 The control problem (PZ’ KZ' rz) with value
mapping VZ is an extension of the problem
(pl’Kl' rl) with value mapping V1 if the
following two conditions are .atisfied.
1. Pl and P2 have the same uncertainty set
2. The set V 1(1"1) of all valuations of

(Pl,Kl,r'l) is a subset of VZ(I‘Z).

Thus extension simply means an increase of the set of feas ble

valuations.

Definition 2,23 Let (PI’K' Fl) and (PZ’ K, rz) be two control
problem with Pl = (U, Q, Yl.Sl). PZ = (U, Q, YZ’ SZ)
such that

(Vy,en (37, € 1) (VqeQ)NVueU)y,(S,(u, 9)) =1,(S{u,q)

then- (PZ,K, rz) is called a strict extension of

(Pl’Kl rl)o
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The definition of strict extension requires that input set,
output set and criterion be the same for the two problems. But
the definition is independent of the criterion as long as it is the
same for both problems. The condition in the definition is equiv-
alent to the requirement that every loop function feasible in
problem (PI.K,FI) is also feasible in (PZ’K’ ‘[‘2). Thus, instead
of an increase of the set of feasible valuations (def. 2.22) an
increase in the set of feasible loop functions is considered and this
might be called an increase in feedback possibilities.

Theorem 2,9 A strict extension is an extension,

Proof: The first condition of Def, 2,22 is satisfied, in fact
U,Q and K are tne same in both problems. Let 7, be any
controller in ™. By Def, 2.23 there exists a controller Y, in
I, such that (V¥ qeQ)(Vuel) 'yl(Sl(u, q)) = 72(52(\1, q)). Then for

all q in Q the equations

u = 7,(5,(u, q))

u 72(52(‘1' q))
are identical, Thus their solutions which define the input mappings
are the same:

(Vv qeQ) m.yl(q) = m,yz(q)

Since K is the same in both problems, we have

(VqeQ) K(m.vl(q). q) = K(m.yz(q). q)

In terms of the value marpings V’l and Vz this relation becomes

v('Yl) = v('Yz)

and we have shown that

B R e . . —



that is

-4]-

Wy, em) (37,eT;) Vi) = V(r,)

v(r,) e V(r,)

which is the second condition of Def, 2,22, Q.E.D.

Theorem 2,10 It Ircr, then (P, K, rz) is a strict extension

of (P, K, r1)~

Proof: The conditions of Def, 2,23 are trivially satisfied, by

taking Yz =7y Q.E.D,

Theorem 2,11 If (Pl,K,rl) and (pZ’K’FZ) are uncertain

control problems and Pl = (U, Q, Yl'sl)'

P, = (U,Q, Y,,S,) with

Y, = Y, xY_ Y £P

Sz(u’ q) = (Sl(uo q), Sa(“t q))
where S : UxQ—Y
a a
and if for all 7 in r, the controller 72:Y1 xYa—— U
defined by 7Z(Y1’Ya) = 71(y1) belongs to 1, then

(PZ’ K, 1"2) is a strict extension of (Pl’ K, I‘l)

Proof: The conditions of Def, 2,23 are trivially satisfied by letting

e be the controller associated to 7 in the statement of theorem 2,11,

Q.E.D.

Theorem 2. 10 covers the case of strict extension by addition of

controllers,

Theorem 2. 11 covers strict extensioa by addition of

sensors and controliers using these sensors. Note that the general

concept of strict extension is still applicable if one switches to an
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entirely different set of sensors and controllers, as long as all
loop functions remain possible.

Theorem 2.12 Let (PZ’ K, rz) be an extension of (Pl'Kl’ rl).

Then the minimal valuations ¢__, and ¢ 2

satisfy

<
*m2 = 4m1
and if an evaluator C is completely applicable
to both problems tha opvalues \2) and v, and

lopvalues vl' ’ vz' satisfy the inequalities

v, _<_v1 and v'2 < v'1
Proof: Let Vl and V2 be the value n.a} ~ings of the two problems.
Then Vl(r‘l) c Vz(r‘z) by definition of extension.
Hence ¢ = inf VI(I‘I)Z inf VZ(I‘Z) =4 o By the order-
preserving property of evaluators
- < '

vi = Clop S Cley,) = v

and

v, = inf Cls) > inf Cls) = v,
¢€V’(T‘l) ¢eVz(T‘z) Q.E.D,

Theorem 2,13 Let (P,K,T) be a control problem with input set

(i.e., set of blind controllers) U and value
mapping V, Assume V(U)C V(r), i.e., every
blind valuation is feasible, Then

(a) (P,K,7T) is an extension of (P, K,U)

(b) (P,K,T) has the same minimal valuation

as (P,K,U)

ool LI T = - - r—— —— — -
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(c) If evaluator C is completely applicable
to (P,K,r) with opvalue v and lopvalue v'
then C is completely applicable to (P, K, U)
with opvalue Vo and lopvalue v") which
satisfy

vi = vi<vy<yvy
o

Proof: (a) follows from V(U)C V(I) by definition 2,22,
(b) let ¢ and ¢ o be the minimal valuations of (P,K,r) and

(P,K, U); then by theorem 2. 12

*m < ¥mo
On the other hand, for all q in the uncertainty set Q

¢_(q) = inf K(m_(q),q)
m 716_1.. m.Y

where m, is the input mapping of (P,vy). Define

M (q) = {m,y(q)eU :7eT}

then

¢m(Q) = inf K(u,q) > inf Kl(u,q) = ¢
ueMr,(q) ueU

(qa)

mo
because Mr(q) is a subset of the input set U, Thus

>
'bm - ¢mo

and since the opposite inequality was previously shown

®m = ®mo

(c) Since V(U)c V(r) and L3 any C completely

* %mo

applicabie to (P,K,T) is completely applicable to (P, K, U).
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vl = vl followe from ¢ = 0
vi<v by the interchange inequality 1.12
v< Yo by theorem 2. 12,

QI E. D‘

Let (Pi’ Ki’ri) for i=1,..., n be control
problems with input sets Ui’ value mappings Vi
and a common uncertain‘y set Q. Assume that
(P, K, I‘l) is an extension of (Pn, Kn’ Un) and
that for i=1,..., n-1 (Pi+l’Ki+l’ri+l) is an
extensicn of (Pi’ Ki’ I‘i). Then
(a) The minimal valuations ¢mi of (Pi’ Ki’ r‘i)i-—'l. ceean

and ¢ of (P ,K ,U ) are all the same.

mo n’ 'n’ "n

(b) If evaluator C is completely applicable to

(Pn’ Kn’ rn) then it is completely applicable to

(Pn’ Kn' Un) and to (Pi' Ki’ I‘i) for i=1,...,n.
(c) Let Vis v‘i and Vo V:) be the opvalue and lopvalue

of (Pi, Ki’ Fi) and (Pn’ Kn’ Un) ; respectively,

they satisfy

Proof: (a) It is clear from definition 2,22, that extension is a

transitive relation. Consequently (Pn, Kn’ rn) is an extension of

(Pi, Ki' ri) which in turn is an extension of (Pn, Kn’ Un). Then by

theorem 2. 12

¢’mo Z ¢m’. Z— ‘bmn
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while by theorem 2,13 b 0= which implies that all minimal

mn
valuations are the same; (b) is an immediate consequence of the
definition of extension and of (a); (c): the equalities follow from
(a); v;lﬁ A from the interchange inequality 1. 12; the other in-

equalities from theorem 2. 12, Q.E.D,

Theorem 2,15 Let (Pi’ K, r‘i) for i=1,...,n be control problems
with common criterion K, input set U and un-
certainty set Q. Assume that (PI’K’ r‘l) is a
strict extension of (PI,K,U) and that for i=1,...,
n-1 (Pi-l-l’K' ri+l) is a strict extension of (Pi’K’ I“i).
Then the claims of theorem 2. 14 hold with
(Pl, K, U) in the role of (Pn, Kn’ Un).
Proof: By theorem 2.9 a strict extension is an extension. The set
of valuations of (PI,K,U) is the same as that of (Pn' K, U) since K
is the same and the difference in output set and system function
between Pl and Pn is immaterial for blind controllers, Therefore,
the assumptions of theorem 2. 14 are fulfilled and the conclusion
follows, Q.E.D.
Theorem 2. 15 is the most important in practice, Its implication
may be described as follows., We start with an input set, an uncertainty
set, a criterion and an evaluator. We determine the opvalue Vo and
lopvalue v:) for the set of all blind controllers. This amounts to
solving an uncertain open-loop optimization problem. Then for any
strict extension to which the evaluator is complete.y applicable, i.e.,
for any incre- ;e of feedback possibilities, the new opvalue v will

satisfy
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't < ¢y <
veSvEv,

There are two cases:

(a) When Vo = v‘; no improvement of the opvalue is possible
regardless of the sensors used, If a blind controller u* yields
Vo it belongs to the set I'* of optimal controllers of any strict
extension, This does not preclude that I'* may contain controllers
v#* preferable to u* under the partial order, and in fact such is
often the case. The control system using +4* will be quasi-adaptive
(as is the one using u*); it may be strictly adaptive but it can not be

adaptive,

(b) When Vo > v‘; then vé places a bound on the improvement
possible by the use of adaptive systems. To obtain the full improvement
(precisely or within €) it is not necessary that every possible loop
function v(S(u,q)) be realizable (and the corresponding valuation in
the evaluators domain) which usually would violate causality. In
some cascs a realizable strict extension will yield full improvement
while in others the bound for realizable strict extensions will lie
between v‘; and Vo

In any event, if we have found a y* in some strict extension for
which v=v'= v; thzn we can be certain that no improvement of the
opvalue can result from iurther extension, though an improvement
with cespect to the partial order (or some secondary evaluator) is
still possible,.

Our final conclusion is that the investigation of opsn loop systems

can provide useful information about the possibilities of adaptive systems,

N
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provided a supercriterion based on an evaluator is used,

2.9 CONSTRAINTS

It may be required that some variables related to tha control
system satisfy given constraints. All system variables a.e functiors
of u and q. Consider the set of all pairs (u,q) for which the
constraints are satisfied. It is a subset of the cartesian product
U x Q and will be called the constraint set,

Optimization of uncertain systems under constraints can be
carried out in several ways, such as

(a) The constraints are replaced by a penalty for violation,
includ=d in the criterion K. In principle, this can be done by letting
K(u, q) = + 0 whenever the constraints are violated, In practice, a
smoother real-valued penalty would be used for computaticnal
convenience, which implies that the constraints may be violatea,
If, in fact, violation must be prevented at all costs, the smooth
penalty function would be based on an artificial constraint set, a
proper subset of the actual constraint set, Once a controller ¥
has been selected with the help of such a penalty function, a check
is made to determine if the use of ¥ can lead to violation of the
actual constrainis, If this is the case ¥ is rejected.

(b) Consider the subset Teqt of " consisting of all controllers
v for which no violation can occur, i.e., for which (m‘y(q), q) belongs

to the constraint set for all q. If Teq is empty the problem has no

t

solution, Otherwise, repic:ce I by Teat to obtain a new control

problem to which the usual methods apply.
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(c) If a probability measure on Q is given, let be the
set of all ¥ in T for which the set of q's for which (m,y(q). q) lies
outside the constraint set has zero measure. Then optimize as

usual over these controllers. The constraints will be satisfied

with probability 1.

The above approaches are mentioned here only to point out
the principles involved. In computational algorithms the determination
of the constrained optimum would be carried out directly, using,
for instance, Lagrange multipliers. The predetermination of Test

is too difficult, in general, unless the constraints bear on u alone.

2.10 FILTERING PROBLEMS

Filtering problems may be viewed as uncertain control problems.
Let QS be the set of signals and Qn the set of perturbations (noise),
Then the uncertainty set Q is the cartesian product Qs x Qn or a
subset thereof. Its elements are thus pairs q= (qs, qn). The filter -y
is to produce an estimate u of some given function of the signal,
selected among a set U of possible estimates, The filter receives
the corrupted signal y = S(qs, qn).

Since the system function S is independent of u the plant is
a filter plant, The criterion K will depend on the quality of the

estimate, hence on qq and u, and may also depend on Q-

2,11 IDENTIFICATION PROBLEMS
For each fixed element q of Q the plant may be considered

determinate, The uncertainty of q is then viewed as an uncertainty
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among a set of determinate plants, indexed by q from Q.
Identification has the objective to estimate which plant is in fact
realized, that is to estimate q. More gener:.lly, one may wish

to estimate a function of q; that is, characteristics of the plant.

As opposed to filtering problems, identification problems arise in

a context where the possibility exists to apply signals to physical
actuators, This is done in order to force the plant to reveal some

of its characteristics. The controller 9 , now called "identifier",
receives signal y from the sensors and produces u = (ui.ue)

where u, is the input to the physical actuators and u, the estimate
of plant characteristics. The system function is independent of

u,, thatis y= S(ui, q). The criterion K will include the assessment
of the quality of the estimate, a function of q and u, but, in addition,
it will take into account the cost of operating the vlant, dependent on
u, and q. Hence K will depend on all variables.

Note that the identification problem is a special case of the
uncertain control problem. In the general uncertain control problem
there is no separation of ¢y into an estimator and a controller in some
more restricted sense, The problem is simply to select a function v
from a set I" of functions so as to minimize the supercriterion J(v),
and if several minima exist, to select one which is minimal under
the partial order and secondary criteria. This procedure, carried

out exactly or ''within ¢', subsumes all other considerations.
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2.12 INFORMATION

The notion of information can be defined in the framework of
control. Consider the strict extension of a control problem resulting
frem the addition of sensors. The information furnished by the
additional sensors can be measured by the decrease in opvalue
resulting from the extension, that is by the saving (in terms of utility)
which the information makes possible. This type of definition of a
measure of information was suggested, in the control context, by
Beilman and Dreyfus., It differs from Shannon's definition in that
the emphasis is on the use made of the information rather than on

its transmission,

2.13 SOURCES

Most authors who have considered the control of uncertain systems
do not explicitly distinguish those concepts which are independent of the
notion of time. Therefore, the sources mentioned here can not be
sharply separated from those listed in Chapter III.

We know of no serious attempt to give a precise definition of the
concept of ''feedback'’. This is astonishing, since a great number of
definitions of ''adaptive' have been suggested, and it is to be expected
that the two concepts are strongly related. Among the proposals that
have been made, the views of Zadeh [ 65] should be of interest to those
persons whose feelings on the subject differ from ours.

In very recent times the view that controller design is just a
special case of decision making has gained acceptance but the pro-
gress towards this realization was slow. The link betvween the sta-

tistical decision theorist and the control engineer was provided by the
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engineers concerned with filtering problems, from Zadeh { 63] to
Middleton [41]. This had to be so, because, unlike the control
engineer, the filter designer could never ignore the presence of un-
certainty.

Uncertainty entered control engineering by the stochastic door,
with James, Nichols and Philips [30] . This led to a vast develop-
ment for which we refer to the review paper of Kushner [ 35].

Feldbaum [17], [18] was among the first to point out clearly
that the '"dual" problems of identification and actuation of an uncertain
plant had to be considered as one single problem. He also stated that
the worst case (minimax) approach would be a most interesting alter-
native to the use of expectations, from an engineering point-of-view.
Other workers [ 51] made the same remark, but also pursued the
stochastic approach, mainly on the ground that the mathematical dif-
ficulties of minimax design were forbidding. This opinion may have
to be revised, now that the full intricacies of stochastic control theory
have come to light.

Macko [40] made the point that a design optimal under expectation
will usually not be dominant (a fortiori, not strictly adaptive). Thus,
when dominant designs do not exist, a decision problem does exist.

Sworder and Aoki [ 53] discuss the relations between control and
decision theory and Sworder [ 54] applies Wald's procedure to discrete-
time problems.

The minimax approach proper (withcut raadomization) has been
mostly considered from the point-of-view of game theory and with the

assumption (not always verified) that a pure value exists, that is, that
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the gap is zero. This has been donec from the point-of-view of filter-
ing oy Johansen [31], of sensitivity by Dorato and Kestenbaum [ 12]
and of genuine conflicts of interest in the theory differential games
founded by Isaacs [28].

The preliminary step of computing the worst case for a given
design has been considered by Howard and Rekasius [27] and, in a
sensitivity context, by Bellanger [4].

The important work of Warga [60] is the only one known to us
which considers a minimax control problem without the zero-gap
assumption.

The idea of measuring information by the gain in utility it can

produce is given in Bellman and Dreyfus [7], Chapter VIII.



CHAPTER I

THE TIME FACTOR

3.1 HEURISTIC INTRODUCTION

Most control systems of interest evolve in time. The inputs
u and outputs y are time-functions., An input u may also include
initial actions: (e.g., the selection of initial conditions and design
parameters) as well as final actions (e, g. the selection of the esti-
mate in an identification problem). Such ''once only'" actions may
be included in a time function description since the sets in which
time functions take their values may be different at different times.

The main impact of the presence of the time variable results
from causality. For each q in Q the system function S must be
a non-predictive mapping of the time functions in U into the time
functions in Y. Also the set T of controllers can only contain non-
predictive mappings 4 of Y into U.

Algorithms for optimization may take advantage of causaiity;
this is known as dynamic programming., To apply the ideas of
dynamic programming the notion of state is introduced. In the case
of uncertain systems different types of states can be defined, All
these definitions rely on causality, the basic idea being the following:

The state'is a summary of the information available to some
observer at some time, adequate for some future purposes.

Various purposes and various observers having access to

different kinds of information may be considered, leading in e.ch

-53.
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case to a different definition of a state,
The maximal information that the controller can have at a
given time consists of:
1. all the a-priori information that was available to the
designer,
2. the current value of the time var.able,
3. the restriction of the time functions u and y to past
and present times
4. the options that are still open for the choice of control

in the future,

A controller may only possess in fact part of the maximal information,
because of a limited ability to recall or use past data and because an
accurate clock may not be available,

From the point of view of the controller the consideraticn of
the uncertainty q as a time function is unnecessary. At any time t
the available information leads to the assertion that q belongs to a
subset of Q. Consideration of such subsets is the only meaningfu) -
way of describing the time e.olution of the uncertainty for an
observer located in the controller., As a mathematical device,
useful for the development of optimization algorithms, one may
consider a superobserver who has access to a great deal more
information than the controller. For such an observer the state
need not be an external function on the plant (in the sense of def, 2.8
of Chapter II), it can be dependent on the actual value of q. For

such an observer it is meaningful to consider q as a function of
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time. For instance in a differential equation descripi.on
f(x(t), u(t), q(t),t)

glx(t), u(t), q(t), t)

x(t)

y(t)
x(t) would be the state for such a superobserver, but not in general
for an observer located in the controller,

Another basic question for the application of dynamic pro-

gramming is the following: To what extent does the selection of
the earlier values of the control u(t) restrict the freedom in the
choice of later values ? The most desirable situation is that there be
no such restriction., When there is a restriction it can be eliminated
by a reformulation of the problem. As an example consider the

case where u is a sequence u u cf real numbers subject

l' “« s ey

n
to Z uZi < E. Then one can reformulate the problem as one in
i=1
which the input is a sequence of real numbers 01, oo On
independently restricted by |0i| < 1, and use the substitution

i-1
w = A(E - Z Z)1/2

1 J
j=1
When optimization is carried out by dynamic programming the
minimization of the supercriterion J(y) is attempted, where J is
defined for the entire control process. In doing this a sequence of
subprocesses are optimized, where the subprocesses take place over

a subinterval of time and are restricted by the information which

———in -
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has become available to the controller, Control policies which

are not optimal for the subprocess may still lead to a minimization
of J(v) for the whole process, and this possibility is especially
often encountered when using the guaranteed performance evaluator.
Indeed if at mid-time the controller has obtained information
indicating that q lies in a particularly favorable subset then any
control policy may be followed from that point on for which the
value of K will not exceed the opvalue of the problem. There

may be many such policies, even all possible policies, In dynamic
programming, optimization for the subprocess is carried out using
a conditional evaluator (for guaranteed performance: the supremum
over the subset of Q), While doing so will not reduce the value

of J for the whole process, the effect is to pick out of the optimal
controller set T1* elements which are preferable under the partial
order. This is extremely valuable, as has been pointed out before,
because an improvement under the partial order is an improvement
under any secondary rules of choice one might consider in addition
to J.

Many of the questions arising in connection with time have not
as yet been resolved in sufficient generality, In the present chapter
we only discuss some of them at greater length and then proceed
to the simple case of discrete-time problems with the guaranteed

performance as evaluator,
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3.2 IMPERFECT RECALL
Besides the causality condition, the set I of possible
controllers may be limited by many practical considerations. One
limitation arises when the controllers do not dispose of the maximal
information about past events, that is, have imperfect recall.
Pertect recall means that any information on which the
selection of u(tl) can be based can also be used to determine
u(tz) whenever t, > tl‘
The simplest case is that of a single control station. All
sensors and actuators have their signal-level terminals in = single
location where the control computer {or operator) will be installed.
In that situation imperfect recall would result from the limitations
on memory and processing capacity of the computer {operator),
Such a limitation is hard tc assess because a control program %
can be implemented by retaining only thoze fea:ures of the past
data which are known to be sufficient te define the future actions
under any circumstances, In this way the meun.ory requiremeats
may sometimes b: consideradbly reduced at the expense of some
additional processing (reduction) of the data as it is received. Such
is the case, for instance, for the Wiener-Kalman-Bucy controller,
In general it is therefore worthwhile to find a representation
of the state of knowledge of the controller which is sufficient for
purposes of optimizatiou and provices an economy in data manipu-
lation, both i(n the calculations to find optimal controllers and in

their implementation. For the case of expected p~rformance this



-58-

question is known as the search for sufficient statistics and has
raceived attention recently in the control context.

In any event, the memory and processing requirements are
so difficult to express as manipulatable functions of 4 that this
type of restriction on imple:.aentation must be ignored in practice,
at 'east in a first attack on the problem.

A far more basic limitation on the ability to recall past data
arises when control is effected from several separate locations,
For instan.ce )the control of a space mission may involve sensing
and actuation from several stations, widely separated and in
relative motion, The situation which thus arises is well known in
game theory, where the crucial iinpr~tance of the information pattern
is fully recognized. In game theory, bridge is a two player game
in which each "player'" consists of two partners (control stations)
which do not sense the same information (each senses only his
hand, not his partner's). In the control case a computer, or a
person able to follow a pre-arranged program, is available at each
station. The design task consists in the selection of programs for
all stations. Because the stations do not sense equivalent data
(if only because of time delays) not every non-predi;tive function
from the combined sensor outputs to the combined actuator inputs
is realizable. Indeed such a function would make the actuation at

one station depend on sensing at another,
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To improve this situation, a communications system between
the control stations will have been provided, but noise and time-
delays limit its performance,

If there are n stations, station i will apply signal u.. to
its actuators and signals uij(j =1,..., i-1, i+l, ..., n) to the
inputs to the channels towards other stations; it will receive

’

signal Yii from its sensors and signals yij(j=l, ce.y i-1, i+l,..., n)
from the channel outputs.

Now consider the communication channels as part of the plant.
One may always do so as a matter of convenience and one may have
to, because plant and communications systerm may not be independent
The ability of a spacecraft to communicate depends on its trajectory
which may be precisely what is being controlled, Note also that
sensing and actuation will themselves involve communication channels,
From this point of view u, = (u,

i’ -

applied by station i and is given by 7i(yi) where ; is the

- uin) is the input to the plant

station's computer program and Y; = (yil. e Yin) is the plant
output sensed by the station.

For the plant the input now is u-= (ul, ceo un) and the output
is y= (yl, ceer Yg ), related by y = S(u,q) via the system function
S (which includes the time delays) and the uncertainty q (which
includes the noise).

If T, is the set of non-predictive Y at station i then the

whole control program 9 = (‘yl. cees 7n) to be designed may be
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chosen, in the absence of further restrictions, in the cartesian
product = rxIx...xT.

When does this constitute a restriction? From a non-
relativistic standpoint, one may compare T to the set To of
all non-predictive functions ¥ mapping Y into U by u= y(y).
A restriction exists if for some u, i#j, qlf q, the outputs
S(u, ql) and S(u, qz) differ in their ith component but not in

. .th
their j componeat.

For relativistic velocities the comparison set Ty does not
exist, since only the non-predictive character of the ; is
physically defined and the times of the different stations are not

comparable,

In the sequel only the case of perfect recall will be considered.

3.3 CLOCK UNCERTAINTY

The time variable t, in terms of which the a-priori plant
description is given, is usually assumed available to the controller,
by means of a perfect clock incorporated in the control computer,
Such an assumption is eminently reasonable in the discrete-time
case where the clock reduces to a counter, In the continuous-time
case the clock must be an analog device and thus necessarily
affected by some error. It may happen that this error is not negligible
and this places an unusual type of restriction on the set T of

realizable controllers.
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Let the input set U consist of time functions u with range
in the set Qu and let the output set Y consist of time
functions y with range in a set Qy’ Let t be a time at which
a value u(t) is to be applied to the actuators and T the set of
all past times at which outputs have been sensed.

Assume first that a perfect clock is available. Then a non-
predictive controller vy will produce u{t) as a function of the
past output time function, i.e., as a function of

{t, {(r.y(r)) : TeT}}
In particular, a blind controller will produce u(t) as a function
of t. If the clock is not perfect, that is, if its reading is in an
uncertain relationship with t, then the clock should be considered
part of the plant and its reading part of the output data y. The
controller then has no clock at all and this restricts the possible
sets 1 of realizable controllers. Indeed the actuator input u(t)
must now be produced as a function of the set of all past outputs,
i.e., as a function of

{yr)=TeT17}

a subset of Qy'

In other words < maps subsets of Qy (elements of its power
set Zﬂy) into points in Qu. A blind controller subject to this re-
striction has not even access to an imperfect clock and can'only

apply inputs constant in time.
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From the point of view of a superobserver who disposes of
a perfect clock, any mapping of 2Qy into Qu can be reduced to
a non-predictive mapping of the set of time-functions Y into the
set of time-function U. The source of the restriction is that the
converse is false: not every non-predictive mapping of Y into
U can be generated by a mapping of ZQy into Qu’ as the case
of blind controllers already shows.

In the sequel it will be assumed that a perfect clock is available.

3.4 TIMED CONTROL PROBLEMS

A satisfactory general theory for timed control problems is
yet to be developed and this task appears replete with difficulties.
In the sequel, only a few preliminary steps are taken in this
direction, First the formal description of control problems,
taking time into account, is considered. Such a description is
essential to any further developments., Perfect recall and
availability of a perfect clock vill be assumed throughout.

Definition 3.1 A time set T is a nonempty totally ordered set.

Definition 3.2 A cut 6 of the time-set T is a partitionof T

into two complementary order-convex subsets
designated by 6 and 6% with the elements of 6
preceding those of 6*. The set@ of all cuts
of T is called the cut-set of T. Itis totally

ordered (6, < 6, iff 0; c 0;) and order-complete.
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Definition 3.3 An input range function w, isa function which
associates a non-empty set wu(t) to every
element t of a nonempty subset Tu of a time

set T. Tu is called the input time set and the

union of the sets wu(t) for all t in Tu is
designated by Qu. The same definitions are

made for output range functions and output

time sets with the subscript u replaced by vy.

Definition 3.4 The maximal input set for a given input range

function w_is the set U (w ) of all
u max' u
functions u from Tu into Qu which satisfy,
(vteT ) ult) ew (t)
Hence it is the cartesian product of the mu(t).

A timed input set U is a nonempty subset of

Umax(uu); its elements are called inputs,
Corresponding definitions are made for a maximal

output set Ymax

(wy) and a timed output set Y,

Notation: For any cut 6 the restriction of u to the domain

'I‘uﬂ 6~ is designated by u; and the restriction of u to the domain

Tun ot is designated by u; . A restriction of u to an empty

domain is called an empty function. Since u is completely defined
- + .

by ug and up we write

u = (u;, u;)

The same notation is used for outputs: y = (y;, y;).
!
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Definition 3,5 A timed plant P = (T, U, Q, Y, S) consists

of a time set T (with cut set()), a timed
input set U (with input time set Tu and range
function wu), a non-empty uncertainty set Q,
a timed output set Y (with output time set T
and range function wy) and a system function
S: U xQ—Y satisfying (¥qeQ) (YueU)
(Vuel) (VOH) up =4, > yp = 7,

empty functions are considered equal).

Every timed plant is also a plant in the sense of Chapter II and
all definitions and theorems of that chapter are applicable, A
valued timed plant is obtained when a criterion K: U x Q-~Re
is given, The criterion refers to the whole history of the process,

causality does not in any way restrict its choice.

Definition 3.6 A function y:Y —U is non-predictive iff (V¥ 0@

(VyeY) (VY eY)
CRRTETRRT
where u= y(y) and u = +(y)

The set of all non-predictive functions from Y

into U is designated by rpp.
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Note that a non-predictive function ¢ is not necessarily a

controller and that a controller (as defined in Chapter II) is

not necessarily non-predictive, All blind controllers are non-

predictive which shows that rnp N r(P) and a fortiori r,

are nonempty.

P

Definition 3.7 Let P be a timed plant and 6 a cut., Then

the truncated input sets are defined by

UO = {u;:ueU}

U; = {u;: ueU}

and the truncated output sets by

Yy = {yp:yve¥}

+
Yo = {rgiveY)

Definition 3.8 For 4 in rnp define the truncation 79- of ¥ by

Y9 Y9 —Ug

1g(vg) = ug
whenever +v(y) = u.

The truncation of 4 is uniquely defined because

v is non-predictive.



-66-

Definition 3.9 For a timed plant P= (T,U,Q,Y,S) and

a cut 8 the truncated system function Sg

is defined by

SG:UO xQ—’Yo

Sg (g, q) = y,
whenever

S(u,q) = y

The truncation of S is uniquely defined because S is non-predictive,

Definition 3,10 For a timed plant P, a cut 6, and an element «

of an' the truncated loop function. Lé is

defined by

Lo = v¢ ° Sg

Definition 3,11 A timed controller for a plant P is a function ¥

from Y into U such that

1.
YelLp
2, (v§é6 c@) (Vqe Q) the equation
“5 = L; (“; v Q)
has exactly one solution (fixpoint) in Ua. The
dependence of this solution on 6 and q is expressed

by the timed input mapping m'yO: Q -°U0

“; E m.yo(Q)
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The set of all timed controllers for ;lant P

13 designated by rT(P)

Clearly rT(P)C rnp

contains U, i.e., all blind controllers,

N r{P), itis a proper subset in general and

Definition 3,12 A timed control problem (P,K,TI) consists of a

timed plant P, a criterion K and a subset T
of rT(P). For 4 in r the pair (P,y) is

called a timed control system.

3.5 MARKOVIAN SETS
On the way towards definitions of states, with their property
of separating past and future, it is necessary to require that the

sets involved allow such a separation,

Definition 3,13 A subset I of rnp is markovian iff

(Voe@) (Vrer)(vTer)

the function
’y. :' Y —-U

defined by

(y) (1) for te T N6
(Y ) (1) {
(@ (y) (1) for teT N 6

belongs to . Aninput set U is markovian
if it satisfies the above definition when

considered as a set of blind controllers.
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The assumption of 2 markovian input sel is important even in

the derivation of the maximum principle,

Theorem 3.1 The intersection of a nonempty collection of

markovian subsets of r‘np is markovian,
Proof: For arbitrary fixed 6, if y and ¥ belong to the inter-
section they belong to each nf the sets, since each set is markovian
? (see Def. 3.13) belongs to each of the sets, rence to their

intersection. Q.E.D.

Theorem 3.2 If U is markovian rnp is markovian.

Proof: Consider v, v ir rﬂp and a cut 6., Let -7' be ccnstructed
as in Def, 3,13, It must be showu that ; is non-predictive,

Let 0' be an arbitrar; cut, For 6' < 6 ué, = 'y;), {y;,)
because ¥ is non-predictive. For §' > @ ué, is con.zosed of

u; = 7; (ya), which is independent of y; and a fortiori of y;,
and of the restrictionof u to §TN g~ N Tu on whi¢ i dormain it
equals 7;, (y;,) which is also independent of y;,. Hence y

is non-predictive. Q.E.D.

Theorem 3.3 U (w ) is always markovian,
max' u

Proof: The condition (VtcTu) u(t) € w,(t) places a restriction
on u independently at every t in T“. Since it is the only restriction

Umax(“’n) is markovian, Q.E.D.
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3.6 VARIABLE END TIME
In an uncertain control system the time at which a certai-

avent occurs may be dependent on the uncertainty 7 as well
as on the input u applied, If this time is not an external
function (Def, 2. 8) then the controller is unable to determine
its exact value, Even if it is an external function the exact value
may on.y become known to the controller at some other time
which can also be uncertain but is necessarily an external function,

The most important uncertain event is the termination of
the process, The control process is considsred to be terminated
when further inputs have no more influence on the value of the
criterion K. The controller may be unable to determine whether
the process has terminated and ¥ is to be chosen taking account
of this difficulty., While this problem is automatically included
in the general description of the control preblem as develeped
so far, it is useful to consider the properties of terminal time
morea closely.

Given u and q the corresponding final cut Of(u, q) is defined
as the infinium, in the complete lattice @ , of all cuts 8 which
satisfy

(VUelU) Uy = ug=>K(ug) = K,y

Given 4 and q the final cut Gt('y,q) is defined as OI(m‘Y(q). q).
Given 4 only (including the case of blind controllers u) the latest

final cut is defined as
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6, (v) = sup 6cly,9q)
qeQ

and the earliest final <ut as

6, (y) = inf 6Odv,q)
qeQ

When, for all v in T, Oe('y) = 01 (v) the terminal time is

known, though variable. It is fixed if in addition it is independent

of «.
In any case the designer can determine 0“ = sup 81(7).
Yyer
The problem data is then reduced to the consideration of Ub s Yo_
f2 f1

S, and T, = {‘y- : 761"}-
%%, %, %,

3.7 OUTLINE OF FURTHER DEVELOPMENTS
The development of the general theory of timed control
problems will not be pursued further here. Nevertheless an outline
of the application of dynamic programming can be given heuristically.
Consider a timed control problem (P, K, I’ with I" markovian,
and an evaluator C, Let 6 be a cut and assume thaton 6 a
controller with truncation ‘y; was used. As a result some
truncated output ya was observed. Assuming perfect recall
and a perfect clock, the state of knowledge of the controller consists of
1. all a priori information, including the evaluator and T,
2. the cut @

3. the pair o¢(0) = (ué. ya).
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Let Qg = {q: Sé (u; , q) = yé} Because I is markovian
it is still possible, for fixed -yé , to switch to any ¥y in T
over 9+. To each such choice of 4 corresponds a valuation

on QB' Using a conditional evaluator, a number (supercriterion)

can be obtained for each v and the problem of its minimization
is a timed control problem over 0+. An optimal controller
and the opvalue have to be determined. This is done for every
ov(6) which can result for any q and any selection of ‘y; .

In consequence a payoff function W(‘y; » q) is defined by
the corresponding opvalue of the conditional evaluator.

The choice of an optimal 7; is thereby reduced to another
control problem on 6 for which an evaluator is required.

The appropriate evaluator might be called a truncated evaluator.

Since each of the control problems that arise in this fashion
can be cut in turn, a recursive (i.e., dynamic programming)
type of algorithm is obtained.

The factorization of C into a conditional and a truncated
evaluator is trivial for the expected per{ormance and for the
guaranteed performance,

An expression for this factorization, valid for arbitrary
evaluators, does not appear to be available, nor is it known

whether C itself can always serve as truncated evaluator,
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Detailed analysis of the case of expected performance has
been actively pursued for some time., Far less is known at
present for the case of guaranteed performance. The rest of
the present work is devoted almost exclusively to this case:

the "minimax' control of uncertain systems.

3.8 ADISCRETE TIME CASE

A specific type of timed control problem will now be
considered. The optimization procedure for guaranteed per-
formance by dynamic programming will then be described,

Let the succession of events be the following:
Application of input u, € wu(l)
Observation of output Yy ewy(l)

Application of input u, emu(Z)

Observation of output Yo-1 ewy(n- 1)
Application of input u € mu(n)

The integer n is fixed, According to the well-established but
;ather unfortunate convention, the same index i is used for the
input u, and the later output Y Consequently i by itself is
not the time. The time set T is the union of Tu and Ty which
interlace, The n elements of Tu and the n-1 elements of Ty
are labeled by overlapping sets of integers despite the fact that

Tu and TY are disjoint, Accordingly
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n

[T o)

i=1

a
n

n-1

=17 o0

izl

v
'

u = (ul’ oo un)
LA SUIRRRTIS ANY

Consider cuts 00, 6., ..., en-l where cut Bi is located before

l’
the application of uy but after the observation of Y- Hence 90
is the initial cut (08 is empty).

The notations will be

i
u‘i = (us eoer W) eU‘i = | | w (i)
j=1

i

;= vy ceen v)eY, = ] w ()
j=1

Let Q be the uncertainty set,
The system function S is defined by (Sl, .o "Sn—l)’ that is,
for i=1, ..., n-1

Si : Ui x Q *wy(i)

Yi = Si(ul’ ooy ui’ q) = Si(u-i' q)

The criterion K: U x Q -Re

has Values K(u. q) K(ull N un’ q)

K(ut;-l ’ unn q)
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The set T of controllers will be the set rnp which is identical
to I‘T(P) for tnis type of plant., Controllers vy are defined by

(-yl,...,'yn) such that for i=1,...,n

v.: Y.

it ¥io el

ui = 'Yi(Yl..--.Yi_l) = 1i(yi‘l)

Note that Y, consists of just one element: an empty function,

0
so that Y| = uy€ wu(l). Let 9} be the set of all functions 75

n
which map Yi-l into wu(x). Then T = rnp = | ‘ I;-
i=1

Since the input set U= U (wu) it is markovian (Theorem 3. 3),

max
hence 1 is markovian (Theorem 3.2). The equality of rnp and
rT(P) results from the fact that the solution of u = (S(u,q)) for
given q is found by composition of a finite number of functions,

a procedure which must lead to a unique result,

Indeed this solution proceeds recursively by

g o= (e, )

Si(ui- » q)

<
]

vi = (y_p0 Yy)

The truncated system function Si- is defined for i=1,...,n-1 by
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Si :Ui X Q-~Yi

y; = S; (v, aq)
That is Si- = (SI’SZ’ . "'Si)' The knowledge of the controller

at cut Gi consists of

a. all a priori information
b. the position of the cut
c. the data tri=(ui,yi)€Ui in

d. the controller ('yl, .o .'yi) used so far,

The information in (a) is fixed by perfect recall. The information
in (b) is implicitly contained in (c). The information in (d) is
redundant for future purposes because
1. given (c) it provides no additional data about the plant
2. since T is markovian, the choice of Y in the past
has no effect on the freedom in the choice of Y in the

future.

For these reasons it is the information in (c) which characterizes
the state of knowledge of the controller. Note that the assumption
of a markovian set of controllers is essential to obtain this
reduction,

Note that for the initial cut 90 the state of knowledge o,
consists of a pair of empty functions, thatis, characterizes the

absence of data.
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Let ZQ be the power set (set of all subsets) of Q.

A - - Q
Define the function Qi :Ui x Yi -2,

6i(o-i) = 61(11;. y;) = {ch:Y-i = S;(“;.Q)}

Then o, must belong to the subset of Ui- x Yi- defined by

- - A
Ei = {trieUi x Yi:Qi(o'i) nonempty}

A
Note that }:o = {o’o} and QO(U'O) = Q.

n-1
Let T = U Ei

i=0
A
and let Q: x =22

A A
be defined by Qo) = Qi(tr)
for o in Ei.

Comments: 1. Many systems evolving continuously in time
can be modeled by the above formalism. For instance,
the input may be a continuous-time function while the
output consists of samples delivered at a discrete set
of times, fixed in advance., Then Y, is such a sample
and TY the set of sample times. As for u, it
consists of the portion of input function between two
consecutive samples. An overlap at one time instant
between u, and A is immaterial for most systems,
The case of variable, uncertain, terminal time is

still within this framework provided the set 9“ n 'I'y

is finite; the cardinality of this set determines n.
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Similarly, if the inputs are piecewise constant
with discontinuities restricted to a discrete set Tu
while the outputs are any type of continuous-time

functions, the above description can be used.,

2. Two states of knowledge of the controller,
characterized by different data (ui- ’ "‘"i- ) may be
equivalent as far as the calculation and implementation
of optimal control is concerned. If such pairs are
considered equivalent it is sufficient to know in which
equivalence class the data is located. What this
equivalence is depends on the structure of the
criterion K and on the evaluator used,

For the case of expected performance, any
function of the observed data, such that the value
of this function determines the equivalence class

in which the data is located serves as a sufficient

statistic,

3.9 THE DYNAMIC PROGRAMMING ALGORITHM
To find the opvalue v and an optimal or e-optimal controller
v* for the problem described in the previcus section, for the

guaranteed performance evaluator, the method of dynamic pro-

gramming can be used,
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The objective is to replace the calculation of

v = inf sup W(y,q)
YeI' qeQ

by a large number of simpler problems of the same type.

In the sequel, whenever an infimum is determined, assume
that its value is not - oo (that would be too good to be true).
Select € > 0, Then there will be an element, in the set over
which the infimum is taken, for which the value does not exceed
the infimum by more than €. Any such element will be called
a minimizing element, Since the control process has a finite
number n of steps, the controller constructed in this manner
will have a guaranteed performance not exceeding the opvalue
by more than ne. In short, one may act as if all infima were
attained.

The algorithm proceeds as follows:

First Step: For every L in En- let

-1 1
"n-1 (un-l * Yp-1 )
Define Dn-l: zn-l — Re
by Dn- l(’n- 1) = inf sup K(u;_l » U, q)

u €w (n) qeé(,.n_ ] )
- SR 2N -’wu(n)

g, (o, ;) = a minimizing u
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Second Step: For every o -2 in Z 2 let

Th-2 © (un-Z ’ yn-Z)

Define Dn-Z: zn-Z _.Re
by Dn_z(crn_z) = . inf (n-1) é(up ) Dn-l(vn-l)
n-le“’u Qe n-2

where -1 = (u;_lo yn:l)

Yn-1 < (un-Z' un-l)

yn-l = (Yn_zn Sn-l(un-l' Q))
and let Bh-1' Zp-2 wu(n-l)

gn_l(cn_z) = a minimizing U

Last (nth) Step: v inf sup Dl(o'l)

u € uu(l) qeQ
where ‘rl = (wl’ Sl(ul’ q))
g, = a minimizing u,

The opvalue v has been found and an (ne-) optimal controller
is implicitly defired by the 8; (i=1,...,n). The g are entirely
adequate for implementation. If desired, the corresponding 7

dependent solely on the outputs, can be found by recursion:
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Y, T B
Yo(y1) = g(vysy))
Y3y 0% = B3lv 7o Y )y )0 y))
etc,,
The dynamic programming algorithm is especially
advantageous when ali sets involved are finite.
Since the sets zi may be difficult to determine, it is worth

noting that for the execution of the algorithm they may be replaced

by any superset, at the expense of recdundant calculations,

3.10 SUPEROBSERVER DESCRIFTION

The problem considered in Sections 3.8 and ?. % was stated
in the basic external description. Frequently an internal description
is given from the point of view of a superobserver to whom q
appears as an input time sequence (qla cens qn). This superobserver
is assumed to be still limited by causality so that his state of
knowledge at cut Gi includes (ui- , q; ). The uncertainty set Q
is then another input set,

Such a description leads to the same dynamic programming
algorithm if the structure of Q as a set of time functions is trivial,
that is if uq(l) = Q and, for i> 1], uq(i) is a singleton, When
the time structure is not trivial then simplifications result,
provided that Q is a markovian input set. This means that for q
and ¢ in Q and arbitrary i the sequence q with ;j = q for

j<i and ;j x Ej for j>i also belongs to Q.

AN S U 45 e b e oy e v e e v e i e v v r— - - P
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It may be necessary to reformulate a given superobserver
description to insure this property. This reformulation is
analogous to the idea of ''prewhitening' of stochastic filtering
and control problems, More specifically, the concept of an
uncertain time function which is only known to belong to a
markovian set is analogous to the idea of white noise,

The sequence of events, as viewed by the superobserver,

is the following:

system starts in fixed initial "internal state" x cw _(0)= {xo}
application of input ulemu(l) by the controller
application of input qlewq(l) by nature

transition to internal state xlewx(l)

production of output ylewy(l) sent to the cortroller
application of input uzem“(Z)

application of input qzcwq(Z)

transition to internal state xzeux(Z)

production of output yzewy(Z)

application of input unewu(n)

application of input qneuq(n)

transition to internal state xncux(n).
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The internal states X, represent the state of knowledge of the
superobserver, who disposes of an accurate clock and enjoys
perfect recall.

The same integers are used for indexing of all variables
though the time sets Tx, Tu’ Tq and Ty may be considered
disjoint.

n

The input set from the controller U = | l wu(1) and the
i=
n

input set from nature Q = T—T uq(i) are both markovian. The
i=1

set T of possible controllers is the same markovian set rnp

as in Section 3.8 because the controller has access only to u and

y (as before) not directly to x.

Let the criterion K: UxQ — Re be defined as a function

solely of X s the final internai state, by
K(u,q) = kix)
k: wx(n) — Re
This is a criterion because X is completely determined by the

sequences u and q. The relationships describing the plant consist

of an internal state transition equation.
X = flupgex )
fi: mu(i) qu(i) x ox(l-l) ~ wx(i)

ig l.o-..n

VAT e e = r Gt [ -
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and an output equation

y; = hlu,q,x)

hi:uu(i) xmq(i) xwx(i) — my(i)
i=1,...,n-1

The appearance of u, as argument for hi corresponds to the
possibili‘y of a selection by the controller among different types
of output, Since u, also influences X5 hence X hence the
value of the criterion, the selection of u, which yields a more
useful output may also lead to a higher cost., Thus this description
includes the cost of measurement as a factor in the optimization.
It may at times be preferable for the controller to select a u,
for which hi is independent of its last two arguments, that is,
decline the possibility of receiving output data because this choice
will lead to a saving which is more valuable than the loss of
informatioa incurred.

Note that, given an external description as in Section 3.8, an
internal description of the above type can always Le trivially
obtained by letting

wq(l) = Q and w (i) = singleton for i> 1

q
q
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Then Xy = absence of data

and X = (u,q) = arguments of K

so that k = K

Also flugapex ) = flunanu yg )

(ui_n qi- )

and hi(ui’ qi’ xi) hi(ui’ qi' ui_ ’ qi. )

Si(u; 5 q;)
Of course, this identification produces only a formal change in

the dynamic programming algorithm.

3.11 ALGORITHM USING INTERNAL DESCRIPTION
Consider cuts 9i for i=0,...,n-1 placed just before the

application of inputs u, by the controller, At cut Gi a

+1
controller with perfect recall disposes of the data o, = (ui- , yi. )

and in general this will not enable the unique determination of X, .

The case where x, is always uniquely deterrnined by o, will be
considered later. Thus there will be a nonempty set r, C wx(i)

of all states x, which can be reached by selecting any q in

a(tri), that is, compatible with the observations, Because U,T" and Q

are all markoviarn the knowiedge of r, rather than o, is already

sufficient for the purpose of optimization.

T p—— R R B T " P+ or— . - i o,
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Therefore, one introduces the sets ""r(i) where for each
i,wr(i) is a collection of subsets of wx(i) sufficiently large to
include all r, that can occur. One may always insure thi by
taking wr(i) as the power set (collection of all subsets) of wx(i)
but much more restricted collections are usually sufficient when
the detailed structure of the problem is taken into account. For
example, if wx(i) is a topological space it may be sufficient to
consider only compact subsets; if it is also a linear space,
compiact and convex subsets may be sufficient and then r, is
characterized by its support function which can be more readily
manipulated,

The set r, plays a role analogous to that of the conditional

probability distribution of x, given o, in the case of expected

i
performance.

Of course r, = {xo} = o (0) and o (0) = {ro}

To proceed to the dynamic programming algorithm note first
that T, is known and that r, can be ~btained recursively from
T Y and Y;- Let the cornpatibility functions ¢ be defined
for i=1l,...,n-1 by

¢ wr(i-l) xmu(i) x«oy(i) - wr(i)
Ci(ri- 1’ uio Yi) = {fi(uis qi’ xi-l) € b)x(i) : qiﬁ‘wq(i),

L AT AL AT REACHE AT W)
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Then r, = Ci(ri-l’ui’yi) for i=1,...,n-1

Note that the compatibility functions are monotone in the sense
that ACB implies

ci(Al ui) Yi) c ci(BO uib Yi)
Now the algorithm can be defined,
First Step: For every Tl in mr(n-l) define

D :wr(n-l) — Re

n-1
Dn-l(rn-l) = . 1nf(n) sup(n) ; supr k(fn(un’qn’xn-l))
n®®u qnqu n-1€ Tn-1
and gn(rn-l) = a minimizing u

Second Step: For every r o2 in wr(n-Z) define

D :wr(n-Z) - Re

n-2

Dn-Z(rn-Z)xu in (n-1) Sl:p (n-1) x suepr Dn-l(cn-l(rn-Z’un-l’yn-l))
n-1¢%y 9h-1 wq n-2 " n-2

where

Yn-1 hn- l(un-l’qn-l’fn-l(un-l’qn-l'xn-Z))

and g : wr(n-Z) - wu(n-l)

n-1

gn-l(rn-Z) = a minimizing u__,

T T T R TR T S—

=4 T ——



-87-

Last (gthl Step: Define

v = inf sup Dl(cl(roo uln Yl))
u, ew (1) qlewq(l)
where y, = hl(ul‘ql’fl(ul'ql’xo))
and let g, = a minimizing u,

Then v is the opvalue of the problem and the g; define the
optimal controller.
If desired, the functions v; can be recovered recursively

by

1(y)) = gyleylrivynyy))
13(¥ 12 ¥3) = g3lcye sy ny ) 7ly ) y,)
etc, .,
Note that the functions Di are monotone set functions in the sense
that AC B implies Di(A) < Di(B)' This algorithm is of a more
complex structure than that of Section 3.9 and it requires
manipulation of the sets r.. Its advantage is that the functions
fi’ hi' cpr k depend only on data at a single time index while in
Section 3.9 the functions K, S-i and Qi have truncated sequences
as arguments.
The present algorithm becomes especially interesting if
simplifying features are present in the problem; these special cases

are considered in the next two sections of this chapter,
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3.12 CASE OF INDEPENDENT OUTPUT UNCERTAINTY
Assume, for the problem described in Section 3,10, that

for each i=1,...,n
. x m
i) = i) x i
wgli) = wr(i) x wp (1)
where wan(n) is a singleton. Then the elements q; are
. X _m
pairs (q’, q,).
Assume also that the state equation involves only q’i‘ and

the output equation only qrin.

x
x, = f '™, x
i i 09

i- l)

m
Then we say that the output uncertainty is independent of the state
uncertainty., This case arises in particular when the hi do not
depend on 9 at all (though the hi still need not be one-one with

respect to x, at fixed ui).

i
Simplifications of the dynamic programming algorithm are
now possible,

Define the reachability function Pyt wr(i-l) x wu(i)-» “’r(i) by
. X,.
pi(ri- 1’ ui) = {fi(ui' q)i‘ ’ xi- l) emx(l):q,i( f“’q(l)o xi—lfri-l}

and the measurement function m, : wu(i) x wy(i) — mr(i) by

my(u,y,) = {xjew (1) : (3qF ewg (1)) y = hy(u,q s x)}

Rl on R+~ el | i 2 e " 4 gy ey
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Then the definition of the compatibility function ¢ reduces to
ci(ri-l' Uss Yi) = pi(ri-l’“i) n mi(ui' Yi)
This expression can be substituted for every appearance of N

in Section 3,11, Furthermore each appearance of sup can
qif‘l’q(i)

be replaced by sup sup . Thus one obtains
q ewr(i) q ewl (1)
i q i q
a further subdivision of the total task into subtasks such as the
separate determination of Py and m, followed by intersection
and the separate extremization over the sets w:(i) and w;n(i).

Note also that the expression for A in the algorithm reduces to
m x
Yi = hi(ui’ q i ’ fi(uil qi’ xi‘l))
A tremendous simplification occurs when the sets Mi(ui’ yi)

never contain more than one point., This case is the subject of

the following section,

3.13 CASE OF INTERNAL STATE OUTPUT
Assume, for the problem described in Section 3.10, that for

any i and any arguments the value of the compatibility function <
is a set of at most one point. Then for all arguments that can
actually occur the value of <, is a set of exactly one point
(a singleton).

This case is obtained when, in the problem of Section 3.12, the
values taken by the measurement functions m, are always singletons.
Then, without loss of generality, one may assume that the output

equation is simply



-90-

. m —3
that is hi(ui’ q; xi) = x

Under these assumptions the dynamic programming algorithm
is considerably simplified and requires only operations with the
functions k, fi and Pye

The reachability function Py is now reduced to

Py ux(i-l) x mu(i) - wr(i)
pi(xi'l' ul) = {fi(ulﬁ qil xi‘l) wa(l) : qiqu(1)}

The superscript x on q’; has become redundant. The algorithm

now proceeds as follows,

First Step: Define Dn-l: wx(n-l) —- Re by

Dn- 1(xn_ l) = . inf (n) sup(n) k(fn(un, QX _ l) )
n €% qne“’q
= inf sup k(xn)
unﬂ"u(n) Xn€P n(xn- 1’ un)
and g, ! wx(n-l) — wu(n)
by gn(xn-l) = a minimizing u

Second Step: Define Dn_zzwx(n-?.) — Re by

D (xn-Z) = in sup Dn-l(fn-l(un-l.qn-l’xn-Z))

n-2
u 1ecn»u(n- 1) Q. le«:q(n- 1)

= inf sup Dn- l(xn_ l)
Yn- lcu“(n- 1) *nh-1€Pn- l(xn-Z’ Yn- l)

TTRRRCT R R g - . -

— e
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and 8,1 wx(n-Z) - wu(n-l)
by gn-l(xn-Z) = a minimizing U
th .
Last (n") Step: Define
v = u?.f 0 q ::pm D (f (u,,9,,%xp))
17u 1"q
= inf sup Dl(xl)
uleuu(l) xlepl(xo,ul)
and g @, (1)
by g, = a minimizing u,

Then v is the opvalue of the problem and the g; define directly

the controller functions 7; by

‘Yi(yl""'yi-l) = -Yi(xl"”'xi-l) = gi(xi_l)

3.14 INTRODUCTION OF STRUCTURE
Thus far in Chapter 1, 2 and 3 no assumptions on the structure

(linear, topological, metric, etc.) of the sets involved has been
made, As a consequence no meaningful assumptions on the structure
of the functions involved (continuity, linearity, convexity, etc.)
could be made either,

Though it is believed that the discussion of the more fundamental
ideas should be made without the introduction of irrelevant structure
assumptions, it is nonetheless clear that further development of

the theory towards application relies entirely on such assumptions.
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Hence in the remainder of this work a very narrow class of
heavily structured problems will be considered more in detail.
This class will be described in Chapter V and is a special case
of the class of problems discussed in Section 3,13, In Chapter V
an investigation of the reachable sets of linear differential
systems and of their support functions is presented. It establishes
a bridge between a familiar type of problem and the class

considered in Chapter V.

‘‘‘‘‘ R o al — Rl e T TA———
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3.15 SOURCES

The application of dynamic programming to the control of
uncertain systems evolving in discrete time was proposed in a
fundamental paper of Bellman and Kalaba [5], for expected
performance, without assumption of perfect recall.

A more detailed application of these ideas is available in
Bellman [6], Bellman and Drevyfus [7] , and Dreyfus [ 13].

Among the important recent works on the stochastic
discrete-time case are those of Striebel [52], Astrom [1] and,
above all, Dynkin [ 14].

Most recently this subject has also been approached from
the point of view of mathematical programming, by Van Slyke
ana Wets [57] and Wets [61].

For the stochastic continuous-time case the developments
begun by Kalman and Bucy [32] and Florentin [20] have led to the
results summarized by Kushner [35].

As for the application of dynamic programming to games
evolving in time (the '"extensive form'), it go:s back at least to
the classical proof that finite games of perfect information have
a saddle-point, For further developments see the treatment of
recursive games by Everett [ 16], of Markov games by Zachrisson [62]
and of differential games by Isaacs [28,29].

For other approaches, see the references discussed at the end

of Chapters Il and V,
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The requirements for sets of admissible inputs stated by
Pontryagin et al. [45], Chapter 1, imply a markovian property

of these sets,

T Sy e o e BERRG p  e —0




CHAPTER IV

REACHABLE SETS OF LINEAR DIFFFRENTIAL SYSTEMS

4.1 INTRODUCTION

The minimax control of linear systems, in fixed time, with end
point criteria and sampled output of the state will be shown later to
reduce to a geometric minimax problem involving reackable sets,
Among the reachable sets cf interest are the sets of states reachable
at a fixed time, under various types of constraints or inputs and initial
conditions. These sets are convex and compact for many types of
constraints and thus fully described by their support functions., Even
when the sets are only compaci ikeir convex hulls are sufficient to
solve some control problems.

Once a fundamental matrix of the linear systemn is known, applica-
tion of the theory of moments or of the maximum principle yields the

support functions of the reachable sets with little additional effort,

4,2 THE BASIC MAPPING
Consider the vector system (n components):

x = A(t)x + £(t) x(tg) = & (1)

and let T be given, t0 < T< oo . A fundamental matrix &t) is
a non-singular solution of

B(r) = A(t)a(t) (2)
Absolutely continuous solutions of Eq. 2 exist for locally integrable
A(t) and are non-singula: throughout if non-singular for some t.

If &t) is a fundamental matrix, every other fundamental matrix is

-95-
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of the form &t)C where C is a constant non-singular n by n

matrix. The unique transition matrix is

-1
W(t, T) = Ht)® ()
Then Eq. 1 may be replaced by

T
x(T) = &T) [<I>'l(to)§ + f q)-l(‘r)f(T)d‘r] (3)
t
Note that Eq. 3 makes sense when f is integrable on fto, T] and that
functions f(t) equal almost everywhere are equivalent as far as
Eq. 3 is concerned., Thus we take f to mean an equivalence class
of integrable functions. Then Eq. 3 defines a linear mapping of
pairs (&,f) belonging to R" x [Ll[to, T]]n into elements x(T) of R".
Note that for 1< p<gq
Ll[to, T] o Lp[toa T] o Lq[to, T]

so that Eq. 3 makes sense a foriori for (equivalence classes of)
functions f whose components belong to Lp for p > 1,

Let £ denote the linear space R” x[Ll[to, T] ]n, the domain of
the mapping defined by E4. 3. Then the problem of reachable sets
at time T may be viewed as f»llows,

Given a set v in & » a "constraint set'", find the image of v in
R” under Eq. 3. We will concentrate on finding the support function

of this image, i.e., the closure of its convex hull,
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4.3 SUPERPOSITION OF INDEPENDENT CONSTRAINTS

It may happen that the elements (£,f) appear as sums of
several such elemeats, each independently constrained. This means
that the constraint set 4 is the vector sum of a finite number of
sets e/ each defined independently of the others,

Then, since the mapping is linear, the image of ¥ is the
vector sum: of the images of the ] and one may determine these
separately.

This is particularly convenient in terms of support functions
since the support function of a vector sum of sets is the sum of the
individual support functions,

Note in this connection that the constraints on f need not always

be independent of those on §.

4.4 DUALITY

Let us restrict our attention to the subspace‘az of .&

.92 = R™x [Lz[to.'r]]“

Let the inner product of elements (§1.f1), (§z, f,) of .82 be de-
fined by

T
= >
SELEh (Bf)> = <t 8> + [ <), Ru>d (@)
%o
then 082 is a Hilbert space and may be identified with its dual.

The basic mapping may be written

x = L(§,f)
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and L’.= will denote the adjoin ot L, i.e., for x in R"

from which

<x, L(Ef)> = < L'x, (£ 1)>

3

L¥*x = (q;"l(to)tb' (T)x, & (t)&"(T)x) (5)

Let ¥ be a constraint set in ogz. Its support function is defined for

AN A A
G(gnf) = Sup < (go f)o (gof)>

(go f)G'Y

The support function of the corresponding reachable set is

H(p)

= Sup < p, L(§,f)>
(gtf)E'Y

= Sup <L*p.(§.f)>
(gof)ﬂ

= G(L*p) (6)

Thus the support function of the reachable set follows by substitution

from the support function of the constraint set,

4.5 HARD CONSTRAINTS AND THE MAXIMUM PRINCIPLE

By '""hard constraints'' is meant a constraint set y of the form

where

"Y:

{(0,6(u, t)): u(t)eQa.ein [ty T]}

is a compact set in R"

are measurable functions from [to, T] into RT

is a continuous function from Rrx[ tor T] into R®

By a theorem of Neustadt the corresponding reachable set is compact

and convex,

e — g e
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Thus for any n-vector q the maximum of <q,x(T)> subject
to the constraint v is attained for some time function u with coerre-
spanding function x and by the maximum principle, a corresponding

function p satisfying
P(t)
x (t)

The hamiltonian

- A'(t)p(t) P(T) = q
o (7)

A(t)x(t) + o(u(t), t) x(ty) =

H = <p(t), A(t)x(t)> + <p(t), d(u(t), t)>
has the maximum value

H

max

< p(t), A(t)x(t)> + max < p(t), ¢(w, t)>
w €N

<p(t), A(t)x(t)> + o (p(t), t) (8)

where o(p,t) is the support function of the set ¢({2t) in R".
d
then —= <p(t), x(t)> = o(p(t), t) (9)

and, since x(to) = 0
t

< p(t), x(t)> = f o (p(T), T)dr

to

at time T

<Pp(T), x(T)>

<q,x%x(T)> = max <gq,x>
Xey

h(q, T)

the support function of the reachable set at time T, evaluated at
argument q,
If & is a fundamental matrix for A, integration of the adjoint

equations gives
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plt) = &' '()#'(T) (10)
Thus the final result is
T
ha, T) = [ o(@” (&(T), e (11)
‘o
which completely describes the reachable set since it is known to be
compact and convex.

In the case where ¢(u,t) = B(tlu with an n by r matrix B(t)
let w(q) be the support function in R’ of ine set Q to which u(t)
is constrained. Then the suppcrt function o(q,t} of the set B(t)Q
is, by Eq. 6

o(q, t) = w(B'(t)q)
and Eq. 11 takes the form

T
ha, T) = [ w(B'OE (09(T)a)dt (12)
%
If Q is defined by N(u)< p where N is a norm in RT, let N¥(:)
designate the dual norm of norm N. Then
wla) = pN¥(q)

and Eq. 12 becomes

T
h(q, T) = p j N*(B'(t)&'~}(t)&'(T)q)dt (13)
t
0

If A and B are independent of t Eq. 12 becomes

s e

T e et vy e e e - —
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h(q, T) = fu(B'eA"T"’q)dt (14)
%
Finally if r=1 and Q is defined by |u|<p

T
ha,T) = b f |breA (T ar (15)
t

0
4.6 THE DUAL HAMILTO!N-JACOBI EQUATION
Taking formula 11 as a starting point, note that along a line in

(9, T) space that is,a solution of the adjoint equations

d
I3 = -A'T)q (16)
h has a total derivativ

P T) - g(q, T) (17)

This suggests that we are faced with the characteristics of a partial
differential equation,
Indeed, provided the derivatives exist, differentiation of Eq. 11

yields

aha.T = o(q, T) + q"A(T) __(3,__ahaq LY (18)

Since, by Eq. 8,

H_ . (Prxt) = o(p,t) + pA(t)x (19)

we may write Eq. 18 as

ah(p, t) _ oh{p, t
___(él;._ = H__ (b, iRt t) (20)
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which is the dual of the Hamilton-Jacobi equation

LIRS SN0 Y (21)

at
which governs the value function J.

While Eq. 20 is integrated forward in time, from the support
tunctior of the initial states, Eq. 21 is to be integrated backward in
time from the terminal cost function.

Just as Eq. 21 may be obtained as the limiting form of the
Bellman equation

J(x,t-At) = max J{x+{A(t)x+é(u, t))At,t) (22)
uel2

equation 20 can be obtained from the dual Bellman equation

h(p, ttAt) = h(p+A tA'(t)p, t) + max p'e(u, t)At (23)
ue

Notice that the duality between Eq. 20 and 21 is analogous to the
duality between the backward and forward Kolmogorov equations for

stochastic systems.,

4.7 HARD CONSTRAINTS AND DUALITY
In the Hilbert space opz consider the subspace £ = 0 which is
itself a Hilbert space with inner product
T
A A
<f, > = f < {(t), £(t)> dt
‘o

Since ¥ is a set in this subspace, its support function evaluated

A
at an element f is given by

T RS T R b 2
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A
Sup <f{,f>
fey

G(f)

T

A
Sup f <f(t), f(t)> dt
ferw t

0

T
= sup [ <), stu(e), > ar

0

A
max < {(t), d(u, t)> dt
ue O

IA

T A
f e (£(t), t) dt (24)

0

t

the maximum integrand at any time t is attained for some u(t)

since N is compact. Either the function u(t) defined in this way is
measurable or it can be approximated by a measurable u(t) with

range in Q so that Eq. 24 exceeds 0(6 by less than €. Thus eqguality
holds and

T
G(f) = f o(£(t), t) dt (25)
‘o
and by the substitution of Eq. 6 one obtains the support function of the
reachable states. The adjcint operator IL#* is multiplication by
(P'l(t) $'(T). Therefore one obtains Eq. 11 in yet ancther wav, by

replacement of f(t) by
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L*p = & Ht)8"(T)p

4.8 INITIAL CONDITION CONSTRAINTS
In case gy = {(g,O): ﬁeﬂo} where Qo is a compact, convex
setin R" with suppert function ho(p), one may apply directly the

duality formvla, Eq. 6, to obtain
hip, T) = ho(@ " (t )&'(T)p) (26)

When initial condition constraints are combined with independent

hard constraints, i.e ,

1 {5, o(u, t)): ﬁeﬂo. u(t, 5 .e.}

superposition applies and the addition of the support functions for
the separate constraints vields

T
h(p, T) = ho(@ ' (t)a'T)p) + [ s o#mp e
‘0
(27)
When the derivatives exis!, this may be viewed as the solution of

the dual Hamilton-Jacobi equation from the initial condition
h(p, ty} = h(p).

4.9 ENERGY CONSTRAINTS

By an energy constraint, is meant the subset of -82

T
v = {(Bow Blthutoh:w'gp+ [ uieua < o7} (28)
t
0

where Qo is & constant symmetric positive definite r' by r'

e “ - PR
W T - i g e SO R AR N——rs. Gy P o ANAGIRY st o ety e e e mrwm
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matrix, BO a constant n by r' matrix, B(t) an n by r matrix,
Q(t} a symmetric r by r matrix positive definite a.e. for t in
[to, T], p bhas r', u has r components and p> 0 is 2 coanstant,
Assume the elements of B and Q are in Lo [to. T],

Since positive definite matrices have positive definite square

reots, one iiay effect the change of variables

‘{ - le/zv

(29)
st a2y
Then 4 may be written
T
YT = {(BOQ(; 1/2 v, B(t)Q(t) -l/zv(t)):v'v + fv‘(t)v(t)dti PZ}

t

0
(30)

i.e., (v,v) is constrained to a sphere of radius p about the origin
of a Hilb~~t space,
The mapping of this sphere into reachable states is described
by
-1 -1/2
x(T) = &(T)d (to)BOQO v

T

+ [ am wpma 2w (tar

to

= L(v,v) (31)
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The adjoint L*, applied to an n-vector p is

ap = (@281, # e ge(mip @™/ 2B e (8! (Tip)
(32)
The support function of the unit sphere in Hilbert space is just the

norm; for the sphere of radius p itis

T
A NN A
G, V) = plv'v + fc'(t)v(t)dt)l/z (33)
Yo
The support function of the reachable set follows from Eqs. 32, 33

by the duality substitution, Eq. 6:

h(p,T) = pTP'HT)® (ty)B,Q; By & ()& (T)p

T
. f p&T)s (1B (BB (e e (Tpar ] /2

to

o(p'M(T)p) /2 (34)

where

M(T) = HT)& (t,)B,Q;" BL# ™ (t)#!(T)

T
+ f #T)e (Bt (B (e (0 (T)d
t
0

(35)
Diffcientiating Eq. 35 one obtains a matrix differential equation for

the symmetric, non-negative definite matrix M(T).

AMIT) . ACTIM(T) + M(T)AY(T) + B(T)Q" (T)BY(T)

with Mit,) = BgQj' By (36)

e — A g e bt < S e e < S
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Using this fact, differentiation of Eq. 34 gives a partial differential

equation for h(p, T)

%‘% = fHp'B('r)Q'I(T)B'(T)p+p'A(T)-g% (37)

or for its square

2 -y
B = pP'B(TIR(T)B(T)p + p'A(T) &L (38)

with initial condition
-1 1/2
h(p, 0) = p(p'B_Q, Byp) / (39)

Since the mapping of Eq. 31 is linear and completely continuous the
reachable set, image of a Hilbert space sphere, is compact and
convex,

When M(T) is positive definite, the reachable set is the ellipsoid

{x: xM}T) x < p} (40)

When M(T) is singular, the reachable set is confined tc the
range subspace of M(T). In this subspace M(T) has an inverse and
the reachable set is the flattened ellipsoid described by Eq, 40
restricted to this subspace.

Controllability means that the reachable set for unconstrained
u, starting with € = 0, is R", Equivalent to this is to say that for
p>0 BO = 0 and Q(t) = I the reachable sec has an interior, i.e.,
det M(T)# 0. Since &T) is nonsirqular this reduces to

T

det f & 1()B()B () "Htydt £ o (41)

t

a well-known result.
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4.10 SOURCES

The idea of viewing control problems as a propagation of
reachable sets may be found in Halkin [25]. A proof of
compactness and convexity of such sets is given by Neustadt [44] .
For the maximum princivle, see Athans and Falb [2] and the
references quoted therein. For the usual definition of
controllability, see Kalman, Ho and Narendra [33]. For the
mathematical background concerning duality, convexity and
support functions see the sources given in Chapter V. The
application of the theory of moments to such problems is dis-

cussed, for instance, by Beckenbach and Bellman [3] .



CHAPTER V

VECTOR. ADDITION GAMES

5.1 INTRODUCTION

In the present chapter the problem with internal state output of
Section 3,13 is considered again and, for the first time in this work,
specific assumptions on structure are made, Essentially, a form of
linearity is assumed. The problems satisfying these assumptions
are called vector addition games. They can arise from a variety of
classical control situations and they are reducible to a simple
canonic form. Their solution depends on the properties of the cri-

terion such as convexity or homogeneity.

5.2 VECTOR ADDITION GAMES
The problem of Section 3.13 is a vector addition game if it
has the following structure,
Let Lx(i) for i=0,1,...,n
L”(i) for i=l,...,n
Lv(i) for i=1,...,n
be real linear spaces,
Let mx(i) for i=0,...,n be a subset of Lx(i).
One may always for i>0 take wx(i) = Lx(i), while
wx(O) is a singleton in Lx(O). The s ace Lx(n) will

also be designated by the abbreviated notation L.
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Let B and v, for i=1,...,n be functions

P'i: wu(l) g L}l(l)

v, wq(l) - Lv(1)
Let Ai’ Bi and Ci for i=1,...,n be linear functions

Ai: Lx(x-l) - Lx(l)

Bi: Lp(l) - Lx(l)

bi: Lv(l) - Lx(l)

Let the state transition equation be
x;= A%+ Bywyluy) + Cyvilg))

As in Section 3,13 the criterion is given by K(u,q) = k(xn) where
k:L — R, The output equation is Y =X for i=1,...,n-1,

The problem is to find a controller in I‘np to optimize

guaranteed performance,

5.3 LINEAR DIFFERENTIAL SYSTEMS WITH END-POINT
CRITERIA

A first example of 2 vector addition game is the following.
Let to' ce ’tn be an increasing sequence of real numbers,
Consider the differential equation for an m-vector valued
function £ on [to,tn]
E(t) = H(t) & (t) + ¢, (u(t), 1) + oqlalt) t) with € (e ) = x,
In this differential equation
H is an m by m matrix of integrable functions on [to,tn],
u is an r-vector of bounded measurable functions on [to,tn] ,

selected from a markovian input set U,

- e —————p + g - —-— - -
< TR AT e e rommes . sme———— ey 0 ot
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selected in a markovian set Q.

¢u and ¢q are continuous m-vector valued functions of

their arguments.

Assume that outputs y; = §(ti) are delivered at time t for

i-1,...,n-1 to a controller which selects the restriction u, of u

to (ti-l’

ti] on the basis of (Yi" "'yi-l)'

The functions q are uncertain and the controller is to be

designed to optimize guaranteed performance with the criterion

K(u,q) = k(E(t_)).

This problem can be reduced to a vector addition game as

follows:

Let § be the transition matrix corresponding to H.

Let x, = §(ti) for i=0,...,n

u, = restriction of u to (ti l,ti] for i=1,...,n.

uu(i) = set of all restrictions u, for u in U,
q, = restriction of q to (t; l’ti] for i=1,...,n,
wq(i) = set of all restrictions q for q in Q.
L, (i)
L (i)

R™ for i=0,...,n.

N® for i=1,...,n.

L) = (Lt 1Y

B, () restriction of ¢u(u(t),t) tn (ti-l’ti]

v.(q,) = restriction of q;q(q(t),t) to (ti-l'ti]

Then the transition equation and the linear functi ‘us Ai' Bi' and

C. are given by

i

n

]
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t,
1

X, = zp(ti,ti_l)xi_1 + f d/(ti,-r)q)u(u(f),-r)d'r
Y1
t.
i
+ f #lt0 Thegla(r), Thar
o1
where the first integral could be written

t.
i

[ vt byl imar

Y1

and similarly for the second integral.
5.4 LINEAR DIFFERENTIAL SYSTEM WITH GENERAL CRITERIA
5.4.1 If the criterion, in the problem of Section 5.3, depends
also directly on u, say by way of an integral, then the running
value of this integral can be taken as an additional component of §
and the problem is still of the same type. This reduction, the Bolza
to Mayer reduction, is well known in the calculus of variations. Un-
fortunately it has the effect of hiding in the dynamics of the system
many useful properties that the criterion may have, preventing one
from taking advantage of such properties, For this reason an ap-

parently much more elaborate alternative way to reduce such a case

to a vector addition game is of interest,

Let x, = (§(ti), Upsonon

)

N

.t 0 e . e R T . B e e e s amr p femem e vem -
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]

i
. m i r
so that Lx(l) R x r(La)(tj-l’tj])
j=1

R™ x (L (t,.t,] )

The transitions of x, are described by the equation of

Section 5,3 together with the adjunction of u, a linear operation,

Then x = (g(ti),ul,...,u)

n (E(ti), u) and the criterion

k may be any functionon L = Lx(n)

m r
R x (Lm(to,tn]) :
The output equation Y, =X is still valid because of perfect

recall,

5.4.2 If the criterion depends also on the time-function £,
say by way of an integral of a function of £(t), u(t) and t, then the
Bolza — Mayer reduction would destroy the linearity of the dif-
ferential equations, It is thus even more advisable to proceed dif-
ferently, Two cases must be distinguished.

a) k depends only on £ by way of the values §(ti). Then,

because of perfect recall, it suffices to take as internal state

xi = (g(to)t s 0oy g(tl)s ul' I lui)

that is the state of knowledge of the controller. The linearity is
trivially preserved and

xn = (g(to)n-.opg(tn)' ul,...,un)

contains all the arguments for the criterion,

b) k depends on the entire function §,
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Then the reduction to a vector addition game is impossible
unless the physical assumptions are slightly modified.

Suppose that at time ti(i=1, ...,n-1) the controller receives,
in one fell swoop, the restriction of § to (ti-l’ti] . One may imagine
a recorder which records on successive sheets, out of vie;n/ of the
controller, and ejects each sheet, corresponding to the time interval
(ti-l’ti) at time t. that is when the sheet is full, The state of
knowledge of the controller at time t then includes the restriction
of both u and § to [to’ti] while the system still hae discrete
time internal state output,

Such a situation may seem strange but can be considered a
good app: ximation to reality when the sami ,.ung times are very
closely spaced, The interpretation is then that a continucus output
recording of § is available but the designer is restricted to the use
of controllers which ''look' at this output recording only every
so often,

Under these conditions a reduction to a vector addition game
is again possible,

Let s, = restrictionof £ ®o [to, ti]

and x; = (si'“l' e ,ui)

Then x, is the state of knowledge of the controller and may be taken
as the output, Linearity is preserved and x =(8,u),..0,u)= (&,u)

contains the arguments required for k.

Lt i T R . LT 4 e i, -—— ane
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5.5 SINGLE STAGE CASE

For n=1 there are no outputs. This may also be called the
open-loop case, The problem is defined just by the criterion
K(u,q) and optimization is over a set of blind controllers. Con-
versely any problem with an outputless plant may be considered as a
problem with internal state sutput (sic) but n=1, Jtis a vector ad-
dition game if one can write

K(u,q) =k(Bu(u) + Cv(q))
indices having become superfluous.

Thus the only linearity requirement is that one have super-
position of the effects of u and q in the argument of k, This is a
very weak requirement as the following example shows.

Let ¢ and n be two vector valued functions on [to,t ] not
necessarily with the same number of components, solutions, for

given initial conditions, of

g(t) = fl(g(t),\I(t), t)

) = L), alt), )
where u is a time function selected by the controller in a set U,
which need not be markovian and q is an uncertain time function
from set Q. Both differential equations may be nonlinear,
Now let
K(u,q) = k(§,n,u,q)
that is k may depend on all time functions invo'ved. Then a

vector addition problem exists because
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a) the linear space L is the product of the function spaces

of £&,n,u and q.

b) (¢,nu, & = (q,0,u,0)+(0,n, 0,q) is the space L.

c) (£,0,u,0) depends only on u while (0,n,0,q) depends

only on q.

This general observation leads to inaumerable special cas s. For

instance k might only d2pend on §(ti) and n(ti). Then

( g(ti) ’ n(tl)) =

(6(£,),0) + (0, n(t,)

where the first term is Jetermined by u and the second by q, which

in effect choose points in the reachable sets at time t. of the two

differential equations. Furthermore one can let §(to) depend on

u and n(to) on q without destroying the superposition.

5.6 THE CANONIC FORM

A canonic form for vector addition games is obtained by the

simple device of extrapolating all effects to time t .

The following change of va.iables is carried out:

X. =
1

A A ccl'A
n n-l

i+1 %

in particular X =X

u, =
i
qi =
hence w (i)
u
and w (i
wq()

A ..

-A

Ay Bikylyy)

n Bl Gy

Al AL B (e ()

-A .. "A'i+l Civi(“’q(m

Then the transition ejuation becomes

x.
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where all variables are elements of L for all i, TLe criterinn is

given by

n
kix ) = k(t) = kix, +z @ - )
i=1

Since the coniroller has a priori knowledge of the linear functione
A, it can determine y—1 = x—l from the observation of y, = x,. The
knowledge of y_1 is sufficient for optimization because the transformed
problem is still a vector addition game znd a fortiori a problem with
internal state output and markovian input sets,

The minus sign in the definition of E; is chosen hecause of

the intuitive appeal of the notion of distance in the case where the

function k is a norm.

5.7 EXAMPLE OF PEDUCTION TO CANONIC FORM

In the case of linear differential systems with end-point
criteria, as considered in Section 5.3, the reduction to canonic ferni
is obtained as follows,

The space L ia R™ and all new variatles are elc ments

of R™, They are defined by
“ii = w(tn,ti)g(ti) = ;p(tn,ti) x, for 1=0,1,...n.
t,
1
5= outt) [ e, mie falr), Tdr

o1
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t

i

g, = -wept) [ e, M e, ar
t
i-1

hence © (i) = #(t,t)e (i)

where cf)u(i) is the reachable set at time ti for

the system £(t) = H(t)E(t) + ¢ (ult), )

with initial condition § (ti_l) =0

given that the restriction of u to (ti-l’ti] is constrained
to belong to wu(i).

Similarly Gq(i) = -y, ti)&—')q(i)

where ;q(i) is the reachable set at time t, for the system

E(t) = H(E() + o (a(t), 1) with &(t ) =0

and the restriction of q to (ti-l’ti] is constrained to wq(i).

A great deal is therefore known about the sets ;u(i) and
Jq(i). Their compactness, convexity, symmetry, support functions
can be determined by the results of classical optimal control theory
and duality as in Chapter IV,

In the case of Section 5.4 the space L 1s infinite dimensional
and in order to obtain sets Cu(i) which are convex it becomes

necessary tc assurme that the set U of input functions is itself con-

. T . . .
vex in (Lw[ to,t ])" andthat ¢ islinearin u,
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5.8 THE GAME-THEORETIC INTERPRETATION
From now on, assume that the problem is given directly
in the canonic form, so that the overbars become unnecessary.
The determination of the opvalue v is equivalent to the
determination of the (pure) value of the foliowing game,
Move 1: minimizing player selects u, in wu(l)

Move 2: maximizing player selects q, in wq(l)

Move 3: minimizing player selects u, in uu(Z)

n

The payoff is k(xo + Z (ui - qi))

i=1l

The game is of perfect information: at every move the player
who must act has knowledge of the selections made at all previous
moves,

The determination of optimal controllers is equivalent to the
determination of an optimal strategy for the minimizing player. Hence
the name '"'vector addition game'',

The determination of the lopvalue v' for the control problem
is equivalent to the determination of the pure value of another game
of perfect information, with only 2 instead of 2n moves, and the

same payoff function.
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Move 1: maximizing player selects sequence (ql, e qn)
with q, ewq(i)

Move 2: minimizing player selects sequence (ul, e ,un)
with uiewu(i)

Another number of interest is the value v'" of the game of

perfect information, with 2n moves, played as follows:

Move 1: maximizing player selects q, in mq(l)
Move 2: minimizing player selects u, in wu(l)
Move 3: maximizing player selects q, in wq(Z)

etc.,.....

By the interchange inequality v'< v'" < v,
If one considers the game of imperfect information, with n
moves, played as follows:
Move i: Both players select simultaneously, one u, in wu(i),
the other q, in wq(i), knowing the selections made
at all previous moves

then v is the upper value and v'" the lower value of this game,

5.9 THE DYNAMIC PROGRAMMING ALGORITHM
The solution of the problem by dynamic programming is straight-
forward in principle. It can be organized as follows:

First Step: Define En: L —- Re

D L—*Re

n-l:

g, L —‘wu(n)
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by
E (x) = sup k(x-q)
" q €w_(n)
q
Dn-l(x) = inf En(x+u)
uewu(n)

gn(x) = a minimizing u

Second Step: Define En-l: L —-Re

Dn-Z‘ L —-R
8,-1° L -*wu(n-l)
by E (x) = sup D__.(x-q)
n-1 q ew (n-1) n-1
q
Dn_z(x) inf En- l(x+u)
uewu(n-l)

gn_l(x) = a minimizing u

last (nth) Step: Define El: L— Re

e
g €, (1)
by E (x) = sup Dl(x-q)
qew (1)
q
v = inf E (x.+u)
uewu(l) 1'"0

a minimizing u

g
Then v is the opvalue and the g; define the optimal controller,

by u, =g, and u = gi(xi-l) = 3i(Vi-1) for i=2,...,n.



-122-

5.10 THE CONSERVATION OF CONVEXITY

It frequently happens that the function k is convex (it might
be a norm or a positive definite quadratic form) and that the sets
mu(i) are convex (as reachable sets of linear systems).

Under these conditions the functions Di and Ei will likewise
be convex, that is, convexity is conserved in the recursive
procedure of Section 5,9.

indeed, assume Di is convex, thenfor 0< 6<1

E.(6x + (1-0)y) = sup D.(6x + (1-8)y - q)
qew (i)
q
= sup Di(G(X-q) + (1-6) (y-q))
qewq(i)

< sup (6 Di(x-q) +(1-6) Di(Y'Q))
qewq(i)

< sup 6 D,(x-q)+ sup (1-6)D;(y-q)
Qqu(l) qew, (i)

Now assume Ei is convex, then for 0 < § <1

Di_1(9x+(1-0)y) = inf Ei(9x+(l-0)y+u)

uewu(i)
Since wu(i) is convex wu(i) z Gw“(i) + (I-O)mu(i). Hence
Di_l(9x+(1-0)y) = inf inf Ei(0x+(l-9)y+9ul+(l-9)uz)
ulewu(i) uzewu(i)
= inf inf Ei(O(x+ul)+(l-0)(y+uz))
u, ewu(i) u, eu“(i)
< inf inf (BEi(x+ul)+(l-0)Ei(y+uz))

v, ewu(i) u, ewu(i)

= 6D, _(x) + (1-6) D;_,(y)
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Now since k is convex, the convexity of all functions Di and

Ei follows by recursion, QED

Note that the sets uq(i) need not be convex. Similarly if k
is concave and the sets wq(i) are convex then all functions E1 and

Di are concave and the sets mu(i) need not be convex for this result.

5.11 THE CONSERVATION OF UNIFORM CONTINUITY
Suppose the function ¢:L — R has the property that, for all x
and y in L

|k(x) - k(y)] < o(x-y)

then, for all i,
|E.(x) - Ej(y)| £ o(x-y)

and |D,(x) - D(y)| < al(x-y)
Assume
|D,(x) - D.(y)] < &(x-y)

then D.(y) - ¢(x-y) £ D;(x) < D,(y) + &(x-y)
Replace x by x-q and y by y-q

D,(y-q) - é(x-y) < D;(x-q) £ D.(y-q) + é(x-y)
Take supremum over q in w(i)

E (y) - é(x-y) £ E,(x) < E(y) + ¢(x-y)
or |E;(x) - Efly)| < olx-y)

and this last relation implies IDi-l(x) - Di_l()’)| < é(x-y) by an

entirely similar argumert. Hence the claim follows by re. arsion.
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Note that it is not necessary that the sets cou(i) and wq(i) or
the function k be convex.

The function ¢ need not be even (¢(-x) = 4(x)) but, if it
is not, it can be replaced by min (¢(-x) , ¢(x)) or by
2(o(-x) + o(x)), which are.

In case ¢ is a norm, one has the conservation of Lipschitz
continuity: whenever k is Lipschitz continuous, with constant X\,
with respect to some norm, the functions Ei and Di are Lipschitz
continuous with the same constant with respect to this norm,

The same result holds for Holder continuity, by letting ¢
be a power of a norm.

More generally, if ¢ can be interpreted as a modulus of
uniform continuity with respect to a norm, then the result says that
Ei and Di are uniformily continuous with the same modulus,

Finally if k is a norm, hence convex and Lipschitz continuous
with respect to itself with constant 1, then the functions Ei and
Di are Lipschitz continuous with constant 1 with respect to
norm k, Furthermore, if the sets wu(i) are convex, Ei and Di

are also convex, by conservation of convexity.

5.12 WHY A MINIMAX PRINCIPLE DOES NOT HOLD
The determination of the opvalue is equivalent to that of the
pure value and saddle-point of a game of perfect information, as
pointed out in Section 5.8,
In the continuous time case, the theory of differential games
provides necessary conditions, which may be called a minimax

principle, for saddle-points, These conditions are very similar to
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the maximum principle for one-sided optimizatioi, On the other
hand, discrete time maximum principles are available in the
one-gided case, especially with convex constraint sets., Thus one
would expect that a discrete minimax principle would apply to

the solution of vector addition games, at least with convex
constraint sets.

The adjoint equation for the canonic form of a vector addition
game is simply P,_y =P that is a constant costate, because the
state is constant for zero inputs,

The reason for the failure of this approach is the following.

In differential games singular surfaces arise, on which the costate
undergoes a jump. In the discrete time game, there is the

possibility of a jump between any two consecutive moves, Thus

the costate equation is really P;.1 =B + )‘i where Xi is the jump. The
occurrence of jumps and the corresponding values of ).i depend

on the behavior of the solution in the large and cannot be determined

by local variational techniques. Thus the )‘i are additional unknowns
for which there are nc simple equations., Hence the costate is
completely undetermined and the minimax principle is vacuous,

One case in which a minimax principle can be shown to hold,
is the case where the function k is linear., This essentially trivial
case can be handled even more easily by duality as in the sequel,

To see how the singularities arise, note that the points x for

which Ei(x) = a are just those points (if any) for which the set
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x - wq(i) is just contained in the set S = {x: Di(x) < a} thatis
the boundaries are in contact. Now the singularity arises for

any x for which the boundary of x -wq(i) has two or more
contacts, from the inside, with the boundary of S. Even for
convex S this is a common occurrence, it leads to = corner in
the locus Ei(x) = a, and the presence of this corner is impossible

to detect by local analysis.

5.13 THE USE OF DUALITY

The sets wu(i) and wq(i) are often closed and convex but
they may be known only by their support functions, Let s be
the support function of wu(i) and o, the support function of mq(i).

In case the function k is convex, in particular if it is a
norm, the problem can be brought to a dual form,

Note that if k is a monotone increasing function of a convex
function it is sufficient to solve the problem for the convex function
because extremization commutes with monotone functions.

To simplify the exposition of the duality transformations,
the following assumptions and conventions are made,

l. L is assumed finite-dimensional

2, Extended real valued convex functions are uscd when

required, though we do not stop to justify their use. Suffice
it to say that the necessary mathematical apparatus has
been developed. The occurrence of infinite values is not

a complication but a simplification (just as the occurrence



-127-

of zero values is often a simplification), When infinite
values occur certain technical requirements must be met,

they will be tacitly assumed.

The case of infinite dimensional L requires a more
sophisticated mathematical apparatus which is still under active
development in the current literature. It will not be considered

here.

If the sets wu(i) and wq(i) are bounded the.. the s=t

n
x + i wu(i) - }_‘ wq(i)

i=1 i=1

which contains all arguments of k that matter, is also bounded.

Now for k convex and real-valued on L, it follows that k
is continuous on L and is Lipschitz continuous on any bounded
set, Hence, by conservation of Lipschitz continuity and convexity
all the functions Ei and Di are Lipschitz continuous on any
bounded sei, convex and real-valued. In particular, every infinum
is a rninimum an every supremum is a maximum since the constraint
sets were assumed closed,

Note also that the support function of a bounded set is convex,
real valued, positively homogeneous and Lipschitz continuous with
respect to the dual norm with a constant equal to the maximum of

the norm on the set,
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J

To compute the maximum of a continuous function on a compact

The practical import of Lipschitz continuity is the following.

set to finite accuracy in finite time is impossible without additional
information. Ii the function is Lipschitz continuous with a known
constant X\ then the maximum lies between a and a + -é where
a is the maximum of the function on a finite e-net. Since compact
sets have finite e-nets for all ¢ > 0, thatis, are totally bounded,
the extremization can at least always be carried out by brute force,

The use of variational techniques is inadequate because there
are no local sufficient conditions for a maximum of convex function
on a convea set., Many local maxima are the rule,

The duality transformations are based on the following concepts,

Let L* be the dual of L, the ,et of all linear real valued
functions on L.

For p in IL* and x in L, (x,p) or (p,x) designates the
value of p at x.

The support function s: L* — Re of aset A in L is defined
by

s(p) = sup (a,p)
aeA

The Fenchel transform kf: L* —’Re of a function k: L —~Re is

defined by

kip) = sup ((x,p) - kix)
xeL

.kf is always convex, If k is convex then (kf)f= k. If k is not

convex then (kf)f is the "convexification" of k: the supremum of

all convex functions which do not exceed k at any point,
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Thus if k is convex, it has the duality representation

».—-'\ f
k(x) = sup ((x,p) - k(p))
pe L¥*

If k is a norm, its dual norm k* on L* is defined by

k*(p) = sup k(x)
xecB

where B is the unit ball {xeL: k(x)< 1},
The dual unit ball is B* = {pe L*: k*(p) < 1}. One has

(k*) * = k and the representation

k(x) = sup (x,p)
p € B¥

If k is a pseudo-norm (because there may be components about
which we do not care) then the dual k* is an extended real valued
norm. B is a cylinder while B#* is flattened into a subspace,
Thus the sup in the representation of k(x) is on a lower dimensional
set, a great simplification,

Note that k* is the Fenchel transform of the function which
equals 0 on B and + o elsewhere, More generally, the support
function of a set is the Fenchel transform of the function which
equals 0 on the set and +o0o0 elsewhere, the indicator function
of the set,

Convention: In the sequel the sets over which the dummy
variable of é.n extremization ranges are not indicated when it is

clear which set is meant,
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5.14 SINGLE-STAGE DUALITY
In the single-stage (open-loop) case, the opvalue v and
lopvalue v' are given by

v = inf sup k(xo'*'u'Q)
u q

v! sup inf k(xo + u-q)

q u
This may be written

v = inf E(x°+u)

u
where
E(x) = sup k(x -q)
q

But k(x-q) = sup [(x-q,p) - kf(p)]

P

E(x) = sup sup [(x,p)- (a,p) - K(p)]
q P
= sup [{x,p) +o(-p) - ki(p)]
P

where o is the support function of set Wq which need not be convex,
The function E is convex by conservation of convexity; this is
obvious here because E is expressed as the supremum of a family
of linear functions,

Now if ©, is convex the determination of v reduces to the
minimization of a convex function on a convex set, so that local
minimality is sufficient,

As for the lopvalue

vi = sup inf sup [(x;,P)+(u,p) - (ap) - K(p)]
q u p
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gsince the bracket is concave in p and linear in u, one can,
for a convex set w interchange the extremizations over u
and p to obtain

vl

sup sup inf [(x_,P)+ (u,p) - (3, P) - K'(p)]
q P u

sup [(x_,P) - s(- p) + o(- p) - k()]
p

where s is the support function of W, -
In case k is a norm, one has

v = inf E(xo+u)
u

E(x)= sup [(x,p)+o(-p)]
P ecB*

In case k is linear, k = (»,x), one has

v = inf sup (xo +u-q,r)= (xo,w) +o(-w) - s(-n)
u q
v' = sup inf (xo+u-q,w) = v

q u

a zero-gap situation,

5.15 MULTISTAGE DUALITY
Applying the Fenchel transformation to the dynamic programming
algorithm

Ei(x) = sup {Di(x-q) : qewq(i)}
D, ,x) = inf {E(x+u) : uew (i)}
one obtains the dual algorithm:

Ef(p) = sup inf [(p-p',x) - o (-pP')+ Df(p')]
x p'

Dl (p) = El(p)+s,(-p)
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In case the difference Dif -, is convex, the first equation
reduces to

f f
If the difference is not convex then the first equation expresses

Ef as the convexification of this difference. It can also be written
f f, ff
E;(p) = (D,p) - v.(-p))

It is the possible need for convexification which makes the '"discrete

mirimax principle' fail, Note the inequality
f f
< - -
E;(p) < D, (p) - o,(-p)

The determination of the lopvalue is much simpler

n

v! = sup sup ... sup inf inf ...inf k(x0 + z (ui-qi))
% ) 9% 1 %2 “n i=1

for convex k and convex sets wu(i). the dual representation gives,

as in the single stage case

n
R CRE R I WA REE)

P i=1

If, in the dual dynamic programming algorithm
f f
E; (p) = D,(p) - o,(-p)

holds for all p and i (no need for convexification), then

n
DL(p) = KB} + D (s,(-B) - o (-p)

i=1l
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so that

v = D (x) = sgp[(xo.p) - Df,(p)] = v

and the zero-gap situation prevails,

The convexification apparently requires extremizations on
allof LL and IL*, an impossible procedure for a computer
program. In fact, when the primal criterion function is real
valued and the sets wu(i) and wq(i) are bounded it is posisible
to show that extremization over compact sets, determinable
by estimation inequalities, is sufficient,

Finally, note that the case of concave k can be treated by
taking it as the negative of a convex function. The effect is to
replace inf by sup and vice-versa, with corresponding
significant changes in the dual algorithm.

One question of interest in uncertain control problems is
that of reachability., Given a set, can one find a controller such
that the internal state at the final time will belong to this set,
regardless of what the uncertain quantities are? For a vector
addition game and set to be reached which is closed and convex
the reachability problermn amounts to considering as criterion k
the indicator function of the given set., Then kf is the support
function of this set, so that the dual algorithm deals entirely with
positively homogeneous functions.

Much remains to be done to explore the properties and the

implementations of the dual algorithm,
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5.16 SOURCES -

The theory of two-person zero-sum games is due to Von
Neumann [58]. The textbook of Karlin[34] contains many of the
results of this theory and of the convexity and duality concepts
used in this chapter. For the major saddle-point theorems,
see Ky Fan [36, 37] and Moreau [43] . The texts on convexity
by Eggleston [ 15] and Valentine [56] were helpful, as well as
the beautiful monograph of Lyusternik [ 39].

The problem of minimizing a convex function on a set known
only by its support function has received attention by Goldstein [24]
and Gilbert [23].

The theory of conjugate convex functions is due to Fenchel [19],
hence the name Fenchel transform. For its developments see
Moreau [42] and Rockafellar [48]. An idea of the difficulty of
the infinite-dimensional case can be obtained from the paper of
Bronsted and Rockafellar [ 11] and the references quoted therein,

The theory of games as applied to control situations is so
far exclusively centered on the differential games introduced by
Isaacs, thatis, to a continuous-time zero-gap situation [28, 29] .
For developments of this approach see Gadzhiev [Zl], Grishin [ 22],
Berkovitz and Fleming [8, 9], Pontryagin [46], Ho, Bryson and

Baron [ 26].



CHAPTER VI

BOUNDS FOR THE PERFORMANCE OF
SUBOPTIMAL CONTROLLERS

6.1 INTRODUCTION
In this chapter vector addition games are considered in
which the criterion function k is a pseudo-norm on the real lirear

space, L, which may be infinite-dimensional.

Thus k(Ax) = |\|k(x)
and k(x+y) < k(x) + k(y)
the notation k(x) = |/x| will be used.

Since extremization commutes with monotone increasing
functions, all results for guaranteed performance can be translated
from the pseudo-norm case to the case where k is a monotone
increasing function of a pseudonorm, such as a power,

The objective is to obtain bounds for the guaranteed performance
of certain suboptimal controllers, These controllers are obtained
by optimization under the (incorrect) assumption that the uncertain
vectors q; are fixed at assumed values q;-

Pseudonorms are considered because their ratios have an
interesting dimensionless meaning. Strict norms are a special
case but pseudonorms allow the possibility of '"don't care' components.
The use of pseudonorms creates no difficulties because everything

takes place effectively in a quotient space which is strictly normed.
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6.2 THE NAIVE CONTROT.LERS

In an n-stage vector addition game let 951+ -+ 29 be
assumed values of the uncertain vectors,

A naive blind controller is a controller which applies,

blindly, the input sequence u ,,... W where u ewu(i) and

i

n

k(xo + Z (uoi- qoi)) = min ... min k(xo + Z (ui - qoi))

i=1 u'lemu(l) unewu(n) i=1

(1)

There may be zero, one or many such controllers, We are
interested in statements about such controllers on the assumption
that some do exist and we want these statements to hold for all
those that exist, unless otherwise stated.

Naive feedback controllers are obtained as follows: For each i
from 1 to n, consider the truncated problem, just after the
observation of X For each X1 let p.'ii (xi-l) (j=i,...,n)

be a naive blind controller for the truncated problem, that is

b (x;_ )ew,(j) and

n n

) j - - ; . .

x(xi_l + z (p,i(xi_l) qoj)) -u mm(i) - .u mm(n) k(xi_l + z (uj qoj))
j=1i i €9 n€%u j=1i

(2)

Then the corresponding naive feedback controller is defined by

=l -
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Again it is assumed that at least one naive feedback controller
('yl, ceey 'yn) exists, and there may be many.
This construction of the feedback controller is precisely
what is called the synthesis of optimadl control as a feedback law
in the classical case of no uncertainty. If the assumption that
q =q, Wwere indeed correct the naive blind controller and the
naive feedback controller would both be optimal and give precisel s
the same value to the criterion, no supercriterion would be needed.
Since the assumption is incorrect the performance of both
controllers must be evaluated by a supercriterion, in general
these performances will be ditferent and neither will be optimal.
The guaranteed performance Jo of the naive open loop con-

troller (u ..ou__) is defined by
o on

I
n n
J, = sup {k(xo -q 4+ Z u):qe z wq(i)} (4)
i=1 i=1

The guaranteed performance Jf of the naive feedback controller

is defined by recursion as follows:

G _y(x) = sup  k(xty (x) - q)
e w (n)

G__,(x) = G__, (x+ (x) - q)
n-2 q:::(n_l) n-1%"Yp 1*

etC.eyceens

J, = sup G (x + v,(x)-q) (5)
qa'»q(l) 1'"o 1'"o
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Finally, designate by J* the opvalue v of the problem, that
is the best guaranteed performance which can be obtain‘ 1, at
least within €, by using truly optimal feedback control, as
considered in Chapter V,

Then Jo > J* and J > J* by optimality. Note that for the

f

single stage case Jo = Jf because there are no outputs,

)

We shall say that the naive open loop cont-oller (uol’ ceer

corresponds to the naive feedback controller (71, coe ,‘yn) if

Yol Yl(xo)
and for i=2,., .,n
i~1
L A z (uOj - qoj)} (6)
j=1

6.3 MAIN ASSUMPTICYS

A first assumption is that the sets wq{i) are briuided in
pseudonorm. This assuces that J'o. Jf. J* and ali ¢ther quantities
considered will be finite.

No'/ note that J’o, Jf anu J* are unchangd if one or more
of the sets wu(i) and wq(i) is replaced by its closure in the
pseudonorm topology. Furthermore if all the suprema over the
sets wq(i) involve convex functions, then nothing is changed by
replacing one or more of the sets mq(i) by the closure of its convex

hull. These replacements will be tacitly assumed,
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Clearly the assumed values %Y, must bear some relation to
the aets wq(i). The second basic assumption is that for i=1,.. .,n~
9, belongs to “’q(i)' By the above it suffices that it belong to
the closure of the convex hull of uq(i).

Besides the two basic assumptions, three additicnal assumptions

will be investigated as to their consequences,

Assumption S: For i=1l,...,n the set wq(i) is symmetric
about the point Qi
By the remarks above it suffices that the closure of the convex

hull of wq(i) be symmetric about q;

Assumption C: The sets uu(i) are convex for all i. (It suffices

that their closure be convex). ,

Assumption P: The pseudonorm is quadratic, that is, it satislies

the parallelogram law

2 2 2 2
e+ yl®+lx-y]|® = 2=|" + 2|y (7

Assumption P implies that

1 2 2
xy = zlx+y|° - lx-y[%) (8)

1s a pseudc inner product on L. In the present chapter it is denoted
by juxtaposition. Hence < = ||x||Z
One has Xy = yX
x(y+\s) = xy + Axz
xz >0

Iyl < ]l - Iyl (9)
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The additional properties that

x2= 0 =>x=0

and lxy| = ]| - ||yl = =%y linearly dependent
are only true for strict norms and inner products, they are not
required in this chapter.

Note that no assumptions are made on the dimension,

completeness or separability of the pseudonormed space L.

6.4 THE SINGLE-STAGE CASE

For the single stage case (n=1) the time index i bhecomes
redundant. By translation of w, or O one can take X, = 0
without loss of generality. According tc the basic assumptions
the assumed value of q is q_ €y and sup qu” < oo.

A naive controller is defined by u with

luy - gl = min fu-aq| (10)
u €w
u
Define J: L - R
by J(x) = sup ||x-qf (11)
qew
q
then J¥ = inf J(u) (12)
Uew
u
and JO = J(uo) (13)

As a supremum of convex functions J is a convex function.
By the triangular inequality

Ix-all - lix-yi<ly-ali< x-all + x-yl

T TR R —— T o 3

—— gy
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taking the sup over q in o

I - x-yll < Hy) < Jx) + [[x-y|
or | I(x) - 3(y)| < [|x-v] (14)
hence J is Lipschitz continuous with the constant 1., Define

R, = sup |lq-q

o q €w
q

The most immediate inequ:..lities are summarized in

Theorem v.1 Under the basic assumptions

max ([u, -q ||, R_/2)< I*< 3 < flu,-q, +R,

Proof: J*< J because u_ belongs to w
- "o o u

o = swp flug-a = sup fu,-a_)+ (q_ - a
qqu qewq
<lug-apll + sup llag-al = fjurq | + R_
q€w
q
Since’ 9, belongs to Wq
J(u) = sup |u-qf > [ju-q_]
qe‘wq

By (10) for u in w
Fu-q ll > llu, - q,ll
so that J(u) > [lu -q|

taking inf over u in W,

J*> |lu-q_|
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Finally [la_-all € [u-q ] + [lu-qf

or R, = sup [lq -qf € [lu-q |l + J(u) < 23(u)

o q €w
q

because q €w
taking inf over u in @,
R0 < 2J% QED

A more interesting type of bound is obtained by finding the
smallest number a such that Jof_ a J¥ under a given combination
of assumptions. These ratio bounds are derived in the theorems
that follow.

Theorem 6.2 Under the basic assumptions solely or augmented

by C or augmented by P (but not by both) the
smallest number a such that
J <aJ¥ is 3
o —
Proof: A. First show that the basic assumptions alone imply Joﬁ 3%,

Indeed for all u in ©y and q in wgr by the triangular inequality

lug-all € fug-qll + flag-ull + [lu-af

By (10); Jug -a il < la,-ull
Since q, and q belong to Wq'!

lu, - all < 33(a)
Taking inf over u in w,*
lug-all <35
Taking sup over q in mq:

J < 3
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B. To show that the bound is tne best it suffices to produce an
example where 0< ‘TO = 3J~ with C satisfied and another such
example with P satisfied,

Take L = R> with the sup nerm. Let Wy = {(0, 1), (2, 1)},

(3
u

{(a, 0): a €R}, g = (0,1) and uy=(-1,0). Then J =3 and

J* = 1 while C is satisfied,

i

Take L = R with absolute value norm. Let mq = {1,3},

w, = {o, 2}, qp= 1, uy=0. Then J =3 and J* =1 while P

0
is satisfied. QED

The proof of Theorem 6.2 requires only the triangular inequality,
hence the bound also holds in pseudometric spaces,

Lemma 6.1 If assumption P and C hold, then for all u in @,

(qo-uo) (u-uo) <0

Proof: If [lu-uj,| = 0 the inner product vanishes by (9), otherwise
by (10)
”uo - qo" = min| u- qo”
u Ewu

Thus for u in w
u
2 2 2
lag - ugl®< llag - ul® = [(aq - up) - (u - up)l
2
or "u - uO“ - Z(u-uo) (qo = uo)z 0

Since W, is convex and contains uq ané u, for 6 in [0, 1]

u, + O(u-uo) belongs to w ard
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2 2
6 ||u-uo|| - 28{u-up)lqy-uy) > 0
The claim follews by taking
| | (u-ughag-u,)l
6 = min 1, ]

2
| “'“0“
QED
In other words, this well known property of euclidean spaces

actually holds in any real pseudoprehilbert space.

Theorem 6.3~ If the basic assumptions are augmented either by

S orby S and C or by P and C, then the

smallest number a such that J ﬁaJ* is 2.

0

Proof: A. First show that S implies J,< 2J%,

0
Since J is convex and S implies J(x) = J(Zqo—x), 9 must
give J its absolute minimum over L., Thus J(qo) < J*, By
Theorem 6.1, [ug-qq( < J*.
By the triangular inequality
”uo‘q“ < “ uo’qou + ”qO -QH

take sup over q in wq to obtain
To< lug-agll + Jlag)< 2o

B. Now show that P and C imply J,< 2J%. For u in @,

0
2 2
I “'qo" = "“'“0 tu, - qo"
2 2 2
o umugh? + [vg-agl? + 2(a-ug) (g -4 > llu-u,|

(using lemma 6.1.) Thus [fu-ug| < | u—qoll < sup |lu-qf| = J(u).

q qu
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Also for all q in wq and u in W,

la-ugll = lla-utu-upll < fla-ull + Ju-ugll < fq-ull + 3(u)

take sup over q in w

I, < 2J(u)

0

and inf over u in w

*
Jo < 27

C. To show that the bound is the best it suffices to produce an

example with 0< J_ . = 2J* for which S and C hold and another

0
such exainple for which P and C hold.

Take L = R2 with the sup norm, let wq: {(- 1, 1), (1, 1)}.

w, = {(a, 0): aeR}, 9y = (0,1) and uy=(1,0). Then Jj,=2 and

J* = 1 while both S and C hold.
Take L = R with the absolute value norm, take w, = R,

w_ = {0,2}, 9= 0, uy=0, then J =2 and J*=1 while both

q 0
P and C hold. QED

Theorem 6.4  If the basic assumptions are augmented by S and

P, then the smallest number a such that

J, < aJ* is V2,

0
Proof: To show that the bound holds, note that for all u in W,

and q in ¥q by assumption S
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2 2
() > max (fu-ql|®, [u-2qy+q]%)

max (|| (w-qg) - (a-ag)| %, |l (a-a)+(a-ag)?)

2 2
fa-qoll ™ + fla-qgll™ + 2| (u-q4)(q-q,)]

2 2
> Jlu-q5ll™ + [la-qgll

2 2
2. "uo - qo" + “q'qO"

by (10). Taking inf over u in W,

2 2 2
7*° > Jlug-aqll ™ + lla-qql

1 2 1 2
I ug-all® + 3 Jlug-2a0 +

1 2
2'2' " uo'qu

Taking sup over q in wq

2 2
x>
J Jo

) —

To show that this bound is the best take the euclidean plane for L,

let wq = {('130)3 (1, 0)}’ wu = {(xl’xz): xlz + xg = l}t qo = (0, 0),

ug = (1,0). Then Jo = 2 and J* = 2 while both S and P hold.
QED

Theorem 6.5  If the basic assumptions are augmented by

S, Pand C, then the smallest number a such that

Jo Sal* is 2/V3,

- e e
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Proof: Define m: L x L - R by

2 2
m(u, q) = max(“q'“” ’ llzqo"q'u" ) (15)
then by S Jz(u) = sup m(u,q) (16)
qew
q
while by (15)
2 2
4m(u,q) - 3 ||u-q| " - HZqo-q-u" > 0 (17)

For u in w by lemma 6.1.
lZ(qo-uo) (uo-u) >0 (18)
and of course
| (2ag-a-u) - 3(ap-uw)® > o (19)
Adding (17), (18) and (19) and rearranging
4m(u,q) > 3 Jug - qf|®
taking sup over q in g » by (16)

45* (u) > 352
Take inf over u in W,

2

47%2 > 37

To show that the bound is the besi take the euclidean plane for L,
let wq = {(0' 0), (4» Z\[Z)}, Wu = {(an 0): aeR}, qo = (2,\[2), uo = (21 0)-

Then J, = 2y/3 and J* = 3 while S, Pand C all hold. QED
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A somewhat longer but illuminating alternative proof of
Theorem 6.5 proceeds in four steps. By S itis sufficient to
consider sets 9q consisting of 2 points (or their convex hull,

a segment), By C itis sufficient to consider sets W, which are
closed half-spaces, By P it is then sufficient to consider the
problem in the plane through the two points, orthogonal to the
boundary of the half-space, After this reduction, the bound for

2 points and a half plane can be established by plane euclidean
geometry.

In some of the examples showing a bound to be the best in
Theorems 6 2 to 6.4, the suboptimal control Uy is not uniquely
determined by (10), This lack of uniqueness can be removed by
minor changes (using an additional dimension if necessary) while
the ratio changes infinitesimally. Hence a uniqueness requirement
could at most lead to the statement of the bound with strict inequality
for non-zero J¥,

When wq has no center of symmetry the next best assumption,
to replace S, is that 9 is an outcenter of wq’ that is a point
at which J attains its minimum over L. In conjunction with the
basic assumption that 9 belongs to the closure of the convex hull
of @ this leads to a best bound of 2 as for S. But without this
basic assumption the bound is 3 wunless the unit ball in the quotient
space is assumed uniformly rotund. This subject is not pursued

because outcenters are hard to determine in practice,
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6.5 A BOUND FOR EXPECTED PERFORMANCE
The stochastic version of the single stage case is obtained

by assuming that q is a random vector with given distribution
on L and letting J(x) be the expectation of | q-x|.

Equation 10 and assumptions P and C retain their meaning.
The basic assumption 9 ewq and assumption S must be redefined,

Let A be a o-algebra on L such that pseudonorm is
measurable and acA, xeL imply x-acA.

Let p be a probability measure on (L, A) such that the ex-

pectation of [ q|| is finite and for a in A,
pla) = pn(2q, - a)

that is, the probability measure is symmetric about 9,-

Define J(x) = E |x-q|
w(q)
JO = J’(uo)
J* = inf J(u)
uew

Now we seek the smallest number a such that J, < aJ*
given that (10), P, C and the stochastic form of the symmetry
assumption all hold.

First note that, unlike supremum, expectation does rot commute
with monotone increasing functions. Hence if k(x) = ||3|:||z the
problem is entirely different. When P holds "x"z is a quadratic

form and if 9, is the mean of q
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y 2 2 2
E jju-q[|” - Ju-qp)l” = E_ |lq-q4l
r(q) r(q)

Since the right-hand-side is independent of u, optimization against
the mean is optimal and JO = J* when J is defined by

J(x) = E ||x-q||2. But this does not hold for the norm itself,
1(a)

Indeed one has

Theorem 6.6 Under the stochastic symmetry assumption

with P, C, (10)and J(x) = E |x-q|, the
plq)

smallest number a such that J, < aJ* is 2//3.
Proof (outline): By the stochastic symmetry assumption a bound
will hold if it holds for atomic measures asigning equal weights
to two points, By C, a bound will hold if it holds for w, 2 closed
half-space. By P it then suffices to consider the plane through
the two points orthogonal to the boundary of the half-space. In
this plane a bound of 2/vV/3 can be shows to hold by elementary
geometry with a discussion of cases, To prove that this bound is
the best let L be the euclidean plane, pu the atomic measure
with equal weight at (0, 0) and (2,2y2), w, = {(a, 0): aeR},

q, = (1,V2), ug=(1,0). Then J*= 2y/3 and J, =4 while all

0
assumptions are satisfied, QED

It is remarkable that this bound is the same as in the corresponding
case of guaranteed performance (Theorem 6.5.). The underlying

reason for this equality is not clear as yet, It may hinge on the fact

that RZ with the f-1 norm and Rz with the /-0 norm are not

only dual normed spaces but are also isometrically isomorphic,



-i51-

6.6 THE TWO-STAGE CASE

Consider a naive feedback controller (-yl,‘yz) for a two-gstage
vector addition game and let (um, uOZ) be the naive blind
controller corresponding to it by (6). Then the three numbers

J J* are in general distinct and satisfy J* < min (Jo, J-\

o' an
Even under the strongest combination of assumptions cnrnsidered
so far (S, P and C) there is then no nontrivial bound involving J*.
Indeed one can have J* = J’0 = J¢ by letting wq(l) and wq(Z) be
singletons, and one has
Theorem 6.7 For two-stage problems satisfying assumptions

S, Pand C or any weakening thereof the largest
1 )'2 such that

NgJoS TR N TS T, N, T 02T,

numbers )‘0’ A
are

Proof: The inequalities hold because pseudonorms are non-
negative, To prove that they are the best it suffices to give an

example for which J* = 0 with Jf >0 and J,> 0 and an example

0
with Jf= 0 and J'o> 0.

Let L be the real line with the absolute value norm, Let
wq(l) = {" 1, l}o wq(z) = {0}, wu(l) = [‘ 1, 1]0“’“(2) = [ov Z]o

xo = qOI = qOZ = 'Yl(xo) = 0, 72(") = (l+x)/2.

Then J,.=J

0 f=lami J* =0,
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Now modify this example by letting -yl(xo) = -1 and

'yz(x) = l+x. Then JO =1 and Jf = 0. OED

Note that the remarks on uniqueness at the end of Section 6.4
apply also to the above examples.

In conclusion, the only non-trivial bound is of the type Jf_<_ aJo.
Intuition suggests that a = 1 that is, feedback, even naive,
cannot be worse than blind naive control. A lower value than 1
is ruled out by the first example in Theorem 6.7. As we shall
see the best bounds under the combination of assumptions considered
already for the single stage case, are all greater than 1. The
meaning of this result is that a naive feedback controller can be
fooled, while a blind controller cannot. The best bound a under

given assumptions will be called the fooling factor for these

assumptions.

Theorem 6.8 In a two-stage problem, assume that w (2), wq(Z),

992 and the pseudonorm satisfy one of the
combinations of assumptions required for the
single-stage data in any one of theorems 6.2, 3,4 or 5.

Let a be the corresponding bound, that is

3,24/2 or 2/Y3. Then J;< aJ, in the two-stage
problem.
Proof: by (5) J, = sup (J;(x0 + 'yl(xo) - q)
qew (1)
q
with G(x) = sup [lx+ v,(x) - g
qewq(Z)

Ty g = M =33 - - -y ——" n——— —



-153-

Also, interpreting (4) with the help of (6)

Jo = sup H(x +v,(xg) - q , x5+ 7,(x4)- q4;)
qewg(1)

with H(x,£) = sup [x+v,(€) - q

q ewq(Z)

since 7z(§) belongs to W, we have for all x and £

H(x, §) > inf sup | x+u-q||
u ew (2) qewq(z)

1
> o sup [ x+a,0x)-qf
qgewg(2)

by the single-stage result, which applies because (2) and (3) imply
that (10) holds when x is considered the initial state of a single-
stage problem with mq(Z) and mu(Z) as constraint sets (and x
is taken as origin),

Thus

H(x,§) > & Gix)

in particular,
1
H(xo + 71("0) -q, xo + 71("0) = q01) Z; G(xo+7l(xo)'q)

taking sup over q in ¥q in wq(l)
J

1
> -
To 2 3 3¢

QED

Note that this bound is not claimed to be the best, but one has
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Theorem 6.9 For two-stage problems satisfying assumptions

S, P and C the fooling factor is 2/v3.
Proof: The bound holds by Theorem 6.5 via Theorem 6.8. To

show that it is the best, let L be the euclidean plane.

wu(l) = {(09 0)}9 wu(z) = {(a, 0): afR}» wq(l) = {(1: '\/-2))('lv\/-2)}n

“’q(z) = {(2,\[2), (-2, '\rz)}p xO = q01 = qoz = Yl(xo) = (0, 0),
72(x) = orthogonal projection of x on wu(Z). Then .]'f = 23,

J. = J¥=3 while S, Pand C hold. QED

0
Of course the fooling factor for weaker assumptions can only
be larger.
In the case of expected performance, Theorem 6.8 is valid
with supremum replaced by expectation throughout, For the
square of a quadratic norm the fooling factor is 1, this is essentially
the Wiener-Kalman-Bucy case with the degeneracy that the cutput
is the exact state vector. But for the norm itself one has

Theorem 6,10 For two-stage problems of expected performance

satisfying P, C and the stochastic form of S

the fooling factor is 2/Y3,

Proof: The bound holds by Theoremn 6,6 via the stochastic parallel
of Theorem 6.8, To show that it is the best, let L be the euclidean
plane. Let the My and My be independent and identical probability
measures for 9 and Py narnely atomic measures with equal
weights at (1, V2) and (-1, -v2). Let w (1) = {(0, 03}, w (2) =
{(a,0): aeR}, X0 = 491 = 902 =71(x0) = (0, 0), 'yz(x) = orthogonal

g=2 and J = J¥= V3 while

all assumptions are satisfied, QED

projection of x on wu(Z). Then J

wap et < e s mo o e - — - ey
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Again, under weaker assumptions the stochastic fooling

factor can only be larger.

6.7 THE MULTI-STAGE CASE

For the case of an arbitrary number n of stages little is
known as yet. An exponential bound o™ on the fooling factor is
easily obtained but far too high. Note though that, for otherwise
fixed assumptions, the bound must be monotone in n because
any n-stage problem is equivalent to an (n+l)-3stage problem
with trivial first stage,

It is the asymptotic behavior of the fooling factor for large n
which is of the greatest interest., It seems that the factor goes to
infinity with n. To obtain finite limits one can make the assumption
that L. has the finite dimension d. The limit for infinite n is
then finite for fixed d and bounds on this limit have been found.
They go to infinity with d.

Another question of considerable interest is the implication of
time invariance of the linear differential system from which the
vector addition game is derived, Finally, the continuous-time

case merits attention despite its much greater technical difficulty,

e
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6.8 SOURCES
Some discussion of the differences between various suboptimal
design methods {or uncertain systems may be found in Dreyfus [13]
who considers discrete~time problems and expected performance.
The mathematical background of the present chapter is
wholly elementary, In fact the proof of the 2/y3 bound, the least
trivial, is nothing more than plane euclidean geometry. For
the general mathematical background the introductory texts of

Simmons [50] and Royden [49] are far more than sufficient,
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