2,348 research outputs found

    Influence of ice formation on the dynamic and thermodynamic properties of aqueous solutions

    Get PDF
    Water dynamics in solutions with biological or non-biological solutes has been intensely studied when both components (solvent and solute) are amorphous. Here, we apply broadband dielectric spectroscopy combined with calorimetric measurements to analyze the dynamics of the aqueous solutions tri-propylene glycol (3PG) and ε-poly (lysine) (ε-PLL), after their water becomes semi-crystalline. Various crystallization levels were explored by conducting experiments with different annealing times at temperatures above the glass transition temperature (Tg). We find that the amount of ice depends on both the time and temperature of the annealing, and that this, in turn, affects Tg and dynamics of the amorphous part of the samples. However, it should be noted that the observed differences are relatively small for the degrees of crystallinity we have studied (up to about 26 wt% of the water). This also implies that the dynamic crossover of the water relaxation from a high temperature non-Arrhenius behavior to a low temperature Arrhenius dependence is unaffected by the partial crystallization and still occurs as a single crossover at the calorimetric Tg. Thus, we cannot detect two different crossovers, as commonly observed for other types of two-component systems, such as two glass formers

    Growth Response to Carbadox in Pigs with a High or Low Genetic Capacity for Lean Tissue Growth

    Get PDF
    The impact of feeding carbadox from 12 to 75 pounds bodyweight on the rate, efficiency, and composition of growth in pigs with a high and low genetic capacity for lean tissue growth (LG) was evaluated. The high LG pigs gained bodyweight and muscle tissue faster and utilized feed more efficiently than low LG pigs. High LG pigs also had carcasses with more dissectible muscle and less dissectible fat. The pigs’ responses to carbadox feeding were dependent on the LG genotype. Feeding carbadox from 13 to 75 pounds bodyweight resulted in improved body growth and efficiency of feed utilization, but the magnitude of the responses were greater in the high LG pigs. Dietary carbadox additions from 13 to 75 pounds also resulted in greater muscle growth rates and carcass muscle content at 75 and 250 pounds in the high but not the low LG genotypes. Based on these data, the value of dietary agents such as carbadox that control or destroy antigens in the body need to be based on the impact of the agent on carcass composition as well as rate and efficiency of body growth. Furthermore, the value of the agent will be increased as pigs’ genetic capacity for lean tissue growth is increased

    Current-Induced Spin Polarization in Gallium Nitride

    Full text link
    Electrically generated spin polarization is probed directly in bulk GaN using Kerr rotation spectroscopy. A series of n-type GaN epilayers are grown in the wurtzite phase both by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) with a variety of doping densities chosen to broadly modulate the transverse spin lifetime, T2*. The spin polarization is characterized as a function of electrical excitation energy over a range of temperatures. Despite weak spin-orbit interactions in GaN, a current-induced spin polarization (CISP) is observed in the material at temperatures of up to 200 K.Comment: 16 pages, 3 figure

    Development of Lumped Element Kinetic Inductance Detectors for NIKA

    Get PDF
    Lumped-element kinetic inductance detectors(LEKIDs) have recently shown considerable promise as direct absorption mm-wavelength detectors for astronomical applications. One major research thrust within the N\'eel Iram Kids Array (NIKA) collaboration has been to investigate the suitability of these detectors for deployment at the 30-meter IRAM telescope located on Pico Veleta in Spain. Compared to microwave kinetic inductance detectors (MKID), using quarter wavelength resonators, the resonant circuit of a LEKID consists of a discrete inductance and capacitance coupled to a feedline. A high and constant current density distribution in the inductive part of these resonators makes them very sensitive. Due to only one metal layer on a silicon substrate, the fabrication is relatively easy. In order to optimize the LEKIDs for this application, we have recently probed a wide variety of individual resonator and array parameters through simulation and physical testing. This included determining the optimal feed-line coupling, pixel geometry, resonator distribution within an array (in order to minimize pixel cross-talk), and resonator frequency spacing. Based on these results, a 144-pixel Aluminum array was fabricated and tested in a dilution fridge with optical access, yielding an average optical NEP of ~2E-16 W/Hz^1/2 (best pixels showed NEP = 6E-17 W/Hz^1/2 under 4-8 pW loading per pixel). In October 2010 the second prototype of LEKIDs has been tested at the IRAM 30 m telescope. A new LEKID geometry for 2 polarizations will be presented. Also first optical measurements of a titanium nitride array will be discussed.Comment: 5 pages, 12 figures; ISSTT 2011 Worksho

    Deficits in Beam-Walking After Neonatal Motor Cortical Lesions are not Spared by Fetal Cortical Transplants in Rats

    Get PDF
    Adult rats that sustained unilateral motor cortical lesions at birth demonstrated deficits in traversing an elevated narrow beam. These deficits, manifested by hindlimb slips off the edge of the beam, were not spared in animals that received fetal cortical transplants into the lesion cavity immediately after lesion placement

    Approximating Weighted Duo-Preservation in Comparative Genomics

    Full text link
    Motivated by comparative genomics, Chen et al. [9] introduced the Maximum Duo-preservation String Mapping (MDSM) problem in which we are given two strings s1s_1 and s2s_2 from the same alphabet and the goal is to find a mapping π\pi between them so as to maximize the number of duos preserved. A duo is any two consecutive characters in a string and it is preserved in the mapping if its two consecutive characters in s1s_1 are mapped to same two consecutive characters in s2s_2. The MDSM problem is known to be NP-hard and there are approximation algorithms for this problem [3, 5, 13], but all of them consider only the "unweighted" version of the problem in the sense that a duo from s1s_1 is preserved by mapping to any same duo in s2s_2 regardless of their positions in the respective strings. However, it is well-desired in comparative genomics to find mappings that consider preserving duos that are "closer" to each other under some distance measure [19]. In this paper, we introduce a generalized version of the problem, called the Maximum-Weight Duo-preservation String Mapping (MWDSM) problem that captures both duos-preservation and duos-distance measures in the sense that mapping a duo from s1s_1 to each preserved duo in s2s_2 has a weight, indicating the "closeness" of the two duos. The objective of the MWDSM problem is to find a mapping so as to maximize the total weight of preserved duos. In this paper, we give a polynomial-time 6-approximation algorithm for this problem.Comment: Appeared in proceedings of the 23rd International Computing and Combinatorics Conference (COCOON 2017

    Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    Get PDF
    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R=100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 micron transition during the Epoch of ReionizationComment: 16 pages, 10 figures, Proceedings of the SPIE Astronomical Telescopes + Instrumentation 2014 Conference, Vol 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI

    Activation of p34cdc2 kinase by cyclin A

    Get PDF
    Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic
    • …
    corecore