348 research outputs found

    Stage specific upregulation of antioxidant defence system in leaves for regulating drought tolerance in chickpea

    Get PDF
    Leaf is one of the early sensors for the drought stress and is important to study drought tolerance mechanism. Activities of antioxidative enzymes and status of malondialdehyde (MDA), hydrogen peroxide (H2O2), proline and total phenols were studied in leaves of drought tolerant (PDG 3 and PDG 4) and susceptible (PBG 1, GPF 2, PBG 5, L 550 and BG1053) chickpea cultivars under irrigated and rainfed conditions at different development stages. In general, with the age of plant, the activities of superoxide dismutase (SOD) and catalase (CAT) increased but the activities of glutathione reductase (GR), ascorbate peroxidase (APX) and peroxidase (POX) decreased in leaves. With some exceptions, in general, higher status of APX and POX in leaves at vegetative stage I (30 days after sowing) and II (60 days after sowing); GR at vegetative stage II and pre-flowering stage and SOD and CAT at seed filling stages in tolerant cultivars under drought stress reflected stage specific upregulation of antioxidant defence system in them. The relatively lower activities of APX and POX in old leaves during seed filling stage make them more prone to enhanced oxidative injury than the young leaves. Lower content of hydrogen peroxide and malondialdehyde in leaves of tolerant cultivars during seed filling reflects the impact of antioxidant defence system operative at that time. The higher accumulation of proline and total phenol in leaves of tolerant cultivars might be playing important role in drought stress tolerance. These results indicated the importance of upregulation of different antioxidant enzymes at variable stages of leaf development

    Breeding tomatoes suitable for processing with triple disease resistance to tomato leaf curl disease, bacterial wilt and early blight

    Get PDF
    India is the second largest producer of tomato with 11 per cent global share and cultivated on an estimated area of 0.76 million hectares with productivity of 24 tonnes per hectare. Less than 1% of the produce is processed when compared to 26% in other major producing countries. Of the estimated more than 41 million tonnes of tomato processed globally, only 130,000 tonnes were processed in India and domestic demand for processed tomato products is expanding at an estimated 30% annually. At present traditional fresh market tomato cultivars are being processed though such cultivars are unsuitable for processing. Processors in India are looking for high yielding tomato cultivars with high total soluble solids (5-6 º Brix), acidity not less than 0.4%, pH less than 4.5 and uniform red colour with a/b colour value of at least 2. In addition, firm fruited tomato cultivars with joint less pedicel (j2) which facilitate mechanical harvesting or rapid hand picking. ICAR-Indian Institute of Horticultural Research has recently developed two high yielding F1 hybrids in tomato viz: Arka Apeksha and Arka Vishesh suitable for processing. On evaluation for three years, both the hybrids recorded good level of total soluble solids (4.5-5º Brix) and colour value of 2. Further, both the hybrids had high yield potential (80-90 tonnes / hectare) with triple disease resistance to tomato leaf curl disease, bacterial wilt and early blight. Arka Apeksha and Arka Vishesh were also bred with jointless pedicel making them suitable for mechanical harvesting. Our experimental studies on vine storability revealed that all the fruits were intact on plants even 110 days after transplanting in the main field facilitating once over harvest

    INTEROPERABLE MODEL FOR BIORESOURCE DISTRIBUTED DATABASES

    Get PDF
    Recently, numerous frameworks and tools are being developed for enhancing access to data and services with a standardized view to communicate the advances in open information sharing. Another emerging field of data exploration is encountered in the coordination, examination and perception of bioresource data and are prompting corresponding new innovations. The bioresource information team aims to develop standards for nationwide data exchange by the establishment of a catalog service to locate and access biological data and information from across the country and information tool for decision makers. With the growth of open data sharing initiatives, the sharing of data among different and myriad sources has increased significantly, but major challenge lies in addressing the issues of interoperability during exchange and use since the data sources are heterogeneous and the data being organization specific is prepared with different (organization) specific data standards and platforms. This paper presents the model based on the study of different metadata standards and to develop a recommended standard for biodiversity information to support interoperability among heterogeneous databases under the umbrella of Indian Bioresource Information Network (IBIN) portal. The paper presents the mapping of different data standards into the IBIN standard for sharing species data in the form of distributed and interoperable web services to set the stage for interoperability

    Optimization of factors influencing osmotic dehydration of aonla (Phyllanthus emblica L.) segments in salt solution using response surface methodology

    Get PDF
    Optimization of process parameters is a critical requirement in food processing and food product industries for the development of highly acceptable product. Quantification of mass transfer kinetics under different processing conditions is essential step for optimizing the osmotic dehydration process. A Box-Behnken Design (BBD), adopted from response surface methodology (RSM) approach was used for evaluating and quantifying the moisture loss and solids gain kinetics of aonla segments in salt solution during the osmotic dehydration process. The independent variables were fixed at three levels (salt concentration- 2, 4, 6%; processtemperature - 45, 50, 55 OC and process time - 60, 120, 180 minutes). The process responses were water loss percentage (WL%) and solids gain percentage (SG%). Validation experiments were conducted at optimum conditions to verify predictions and adequacy of the models. The optimum conditions predicted were 5.02% salt concentration, 54.8 OC temperature and 60.64 minutes process time to attain a desired effect of maximum water loss (6.42%) and minimum solid gain (1.09%) in osmotic dehydration of aonla in salt medium

    Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System

    Full text link
    We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670±\pm100 μ\mus, and the implied strength of scattering (scattering measure) is the lowest that is estimated towards the Crab nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than \sim9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of \sim50 kJy, and the implied brightness temperature is 1031.610^{31.6} K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over two orders of magnitude larger than the prototype equipment, the full system will be capable of detecting such bright giant pulses out to a wide range of Galactic distances; from \sim8 to \sim30 kpc depending on the frequency. The MWA-LFD will thus be a highly promising instrument for the studies of giant pulses and other fast radio transients at low frequencies.Comment: 10 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    Value at Risk models with long memory features and their economic performance

    Get PDF
    We study alternative dynamics for Value at Risk (VaR) that incorporate a slow moving component and information on recent aggregate returns in established quantile (auto) regression models. These models are compared on their economic performance, and also on metrics of first-order importance such as violation ratios. By better economic performance, we mean that changes in the VaR forecasts should have a lower variance to reduce transaction costs and should lead to lower exceedance sizes without raising the average level of the VaR. We find that, in combination with a targeted estimation strategy, our proposed models lead to improved performance in both statistical and economic terms

    HSP90-CDC37-PP5 forms a structural platform for kinase dephosphorylation

    Get PDF
    Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a ‘factory reset’ of the kinase prior to release

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
    corecore