3,506 research outputs found

    Friction as Contrast Mechanism in Heterodyne Force Microscopy

    Get PDF
    The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an Atomic Force Microscope. From different excitation schemes, Heterodyne Force Microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative SubSurface-AFM imaging.Comment: 7 pages main paper + 11 pages supplementary material

    Inelastic semiclassical Coulomb scattering

    Get PDF
    We present a semiclassical S-matrix study of inelastic collinear electron-hydrogen scattering. A simple way to extract all necessary information from the deflection function alone without having to compute the stability matrix is described. This includes the determination of the relevant Maslov indices. Results of singlet and triplet cross sections for excitation and ionization are reported. The different levels of approximation -- classical, semiclassical, and uniform semiclassical -- are compared among each other and to the full quantum result.Comment: 9 figure

    Non-adiabatic molecular association in thermal gases driven by radio-frequency pulses

    Get PDF
    The molecular association process in a thermal gas of 85^{85}Rb is investigated where the effects of the envelope of the radio-frequency field are taken into account. For experimentally relevant parameters our analysis shows that with increasing pulse length the corresponding molecular conversion efficiency exhibits low-frequency interference fringes which are robust under thermal averaging over a wide range of temperatures. This dynamical interference phenomenon is attributed to St\"uckelberg phase accumulation between the low-energy continuum states and the dressed molecular state which exhibits a shift proportional to the envelope of the radio-frequency pulse intensity.Comment: 5 pages, 3 figure

    Ionization and charge migration through strong internal fields in clusters exposed to intense X-ray pulses

    Full text link
    A general scenario for electronic charge migration in finite samples illuminated by an intense laser pulse is given. Microscopic calculations for neon clusters under strong short pulses as produced by X-ray free-electron laser sources confirm this scenario and point to the prominent role of field ionization by strong internal fields. The latter leads to the fast formation of a core-shell system with an almost static core of screened ions while the outer shell explodes. Substituting the shell ions with a different material such as helium as a sacrificial layer leads to a substantial improvement of the diffraction image for the embedded cluster thus reducing the consequences of radiation damage for coherent diffractive imaging.Comment: 5 pages, 4 figure

    Effects of precipitation uncertainty on discharge calculations for main river basins

    Get PDF
    This study quantifies the uncertainty in discharge calculations caused by uncertainty in precipitation input for 294 river basins worldwide. Seven global gridded precipitation datasets are compared at river basin scale in terms of mean annual and seasonal precipitation. The representation of seasonality is similar in all datasets, but the uncertainty in mean annual precipitation is large, especially in mountainous, arctic, and small basins. The average precipitation uncertainty in a basin is 30%, but there are strong differences between basins. The effect of this precipitation uncertainty on mean annual and seasonal discharge was assessed using the uncalibrated dynamic global vegetation and hydrology model Lund-Potsdam-Jena managed land (LPJmL), yielding even larger uncertainties in discharge (average 90%). For 95 basins (out of 213 basins for which measurements were available) calibration of model parameters is problematic because the observed discharge falls within the uncertainty of the simulated discharge. A method is presented to account for precipitation uncertainty in discharge simulations

    Model- and Parameteroptimization for a Constitutive Law Describing Deformation Induced Anisotropy

    Get PDF
      &nbsp

    Clusters under strong VUV pulses: A quantum-classical hybrid-description incorporating plasma effects

    Full text link
    The quantum-classical hybrid-description of rare-gas clusters interacting with intense light pulses which we have developed is described in detail. Much emphasis is put on the treatment of screening electrons in the cluster which set the time scale for the evolution of the system and form the link between electrons strongly bound to ions and quasi-free plasma electrons in the cluster. As an example we discuss the dynamics of an Ar147 cluster exposed to a short VUV laser pulse of 20eV photon energy.Comment: 8 pages, 9 figure

    Effects of precipitation uncertainty on discharge calculations for main river basins

    Get PDF
    This study quantifies the uncertainty in discharge calculations caused by uncertainty in precipitation input for 294 river basins worldwide. Seven global gridded precipitation datasets are compared at river basin scale in terms of mean annual and seasonal precipitation. The representation of seasonality is similar in all datasets, but the uncertainty in mean annual precipitation is large, especially in mountainous, arctic, and small basins. The average precipitation uncertainty in a basin is 30%, but there are strong differences between basins. The effect of this precipitation uncertainty on mean annual and seasonal discharge was assessed using the uncalibrated dynamic global vegetation and hydrology model Lund-Potsdam-Jena managed land (LPJmL), yielding even larger uncertainties in discharge (average 90%). For 95 basins (out of 213 basins for which measurements were available) calibration of model parameters is problematic because the observed discharge falls within the uncertainty of the simulated discharge. A method is presented to account for precipitation uncertainty in discharge simulations

    Semiclassical initial value calculations of collinear helium atom

    Full text link
    Semiclassical calculations using the Herman-Kluk initial value treatment are performed to determine energy eigenvalues of bound and resonance states of the collinear helium atom. Both the eZeeZe configuration (where the classical motion is fully chaotic) and the ZeeZee configuration (where the classical dynamics is nearly integrable) are treated. The classical motion is regularized to remove singularities that occur when the electrons collide with the nucleus. Very good agreement is obtained with quantum energies for bound and resonance states calculated by the complex rotation method.Comment: 24 pages, 3 figures. Submitted to J. Phys.
    • …
    corecore