4,983 research outputs found
One-particle irreducible functional approach - a new route to diagrammatic extensions of DMFT
We present an approach which is based on the one-particle irreducible (1PI)
generating functional formalism and includes electronic correlations on all
length-scales beyond the local correlations of dynamical mean field theory
(DMFT). This formalism allows us to unify aspects of the dynamical vertex
approximation (D\GammaA) and the dual fermion (DF) scheme, yielding a
consistent formulation of non-local correlations at the one- and two-particle
level beyond DMFT within the functional integral formalism. In particular, the
considered approach includes one-particle reducible contributions from the
three- and more-particle vertices in the dual fermion approach, as well as some
diagrams not included in the ladder version of D\GammaA. To demonstrate the
applicability and physical content of the 1PI approach, we compare the
diagrammatics of 1PI, DF and D\GammaA, as well as the numerical results of
these approaches for the half-filled Hubbard model in two dimensions.Comment: 36 pages, 12 figures, updated versio
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
Strong electronic correlations pose one of the biggest challenges to solid
state theory. We review recently developed methods that address this problem by
starting with the local, eminently important correlations of dynamical mean
field theory (DMFT). On top of this, non-local correlations on all length
scales are generated through Feynman diagrams, with a local two-particle vertex
instead of the bare Coulomb interaction as a building block. With these
diagrammatic extensions of DMFT long-range charge-, magnetic-, and
superconducting fluctuations as well as (quantum) criticality can be addressed
in strongly correlated electron systems. We provide an overview of the
successes and results achieved---hitherto mainly for model Hamiltonians---and
outline future prospects for realistic material calculations.Comment: 60 pages, 42 figures, replaced by the version to be published in Rev.
Mod. Phys. 201
Roadmap of ultrafast x-ray atomic and molecular physics
X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm−2) of x-rays at wavelengths down to ~1 Ångstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 Ångstroms) and the bond length in methane of ~1 Ångstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Ångstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Ångstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science
Stochastic optimization of a cold atom experiment using a genetic algorithm
We employ an evolutionary algorithm to automatically optimize different
stages of a cold atom experiment without human intervention. This approach
closes the loop between computer based experimental control systems and
automatic real time analysis and can be applied to a wide range of experimental
situations. The genetic algorithm quickly and reliably converges to the most
performing parameter set independent of the starting population. Especially in
many-dimensional or connected parameter spaces the automatic optimization
outperforms a manual search.Comment: 4 pages, 3 figure
Recommended from our members
Measurement of masses in the [Formula: see text] system by kinematic endpoints in pp collisions at [Formula: see text].
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics
Recommended from our members
Search for physics beyond the standard model in events with τ leptons, jets, and large transverse momentum imbalance in pp collisions at [Formula: see text].
A search for physics beyond the standard model is performed with events having one or more hadronically decaying τ leptons, highly energetic jets, and large transverse momentum imbalance. The data sample corresponds to an integrated luminosity of 4.98 fb-1 of proton-proton collisions at [Formula: see text] collected with the CMS detector at the LHC in 2011. The number of observed events is consistent with predictions for standard model processes. Lower limits on the mass of the gluino in supersymmetric models are determined
Recommended from our members
Search for supersymmetry in hadronic final states with missing transverse energy using the variables αT and b-quark multiplicity in pp collisions at [Formula: see text].
An inclusive search for supersymmetric processes that produce final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of 8 TeV. The data sample corresponds to an integrated luminosity of 11.7 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, αT, is used to discriminate between events with genuine and misreconstructed missing transverse energy. The search is based on an examination of the number of reconstructed jets per event, the scalar sum of transverse energies of these jets, and the number of these jets identified as originating from bottom quarks. No significant excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of simplified models, with a special emphasis on both compressed-spectrum scenarios and direct or gluino-induced production of third-generation squarks. For the case of gluino-mediated squark production, gluino masses up to 950-1125 GeV are excluded depending on the assumed model. For the direct pair-production of squarks, masses up to 450 GeV are excluded for a single light first- or second-generation squark, increasing to 600 GeV for bottom squarks
- …