167 research outputs found

    Particle transport in TCV H-modes

    Get PDF

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure

    Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum

    Get PDF
    Key message In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. Abstract The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Colocalization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50 % of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species

    Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance

    Get PDF
    Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twentyone transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58

    The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana

    Get PDF
    Active oxygen species (AOS) are central components of the defence reactions of plants against pathogens. Plant respiratory burst oxidase homologues (RBOH) of gp91phox, a plasma membrane protein of the neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, play a prominent role in AOS production. The role of two RBOH from Nicotiana benthamiana, NbrbohA and NbrbohB that encode plant NADPH oxidase in the process of elicitor-induced stomatal closure and hypersensitive cell death is described here. NbrbohA was constitutively expressed at a low level, whereas NbrbohB was induced when protein elicitors exist (such as boehmerin, harpin, or INF1). The virus-induced gene-silencing (VIGS) method was used to produce single-silenced (NbrbohA or NbrbohB) and double-silenced (NbrbohA and NbrbohB) N. benthamiana plants. The hypersensitive response (HR) of cell death and pathogenesis-related (PR) gene expression of these gene-silenced N. benthamiana plants, induced by various elicitors, are examined. The HR cell death and transcript accumulation of genes related to the defence response (PR1) were slightly affected, suggesting that RBOH are not essential for elicitor-induced HR and activation of these genes. Interestingly, gene-silenced plants impaired elicitor-induced stomatal closure and elicitor-promoted nitric oxide (NO) production, but not elicitor-induced cytosolic calcium ion accumulation and elicitor-triggered AOS production in guard cells. These results indicate that RBOH from N. benthamiana function in elicitor-induced stomatal closure, but not in elicitor-induced HR

    An image classification approach to analyze the suppression of plant immunity by the human pathogen <it>Salmonella</it> Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The enteric pathogen <it>Salmonella</it> is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by <it>Salmonella</it> is an active infection process. <it>Salmonella</it> changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by <it>Salmonella</it> infection on <it>Arabidopsis</it>.</p> <p>Results</p> <p>The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic <it>E. coli</it> and the plant pathogen <it>Pseudomonas syringae</it> and used to study the interaction between plants and <it>Salmonella</it> wild type and T3SS mutants. We proved that T3SS mutants of <it>Salmonella</it> are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels.</p> <p>Conclusion</p> <p>This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium <it>Salmonella</it> Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or even extended to other features.</p

    Two Homologous Putative Protein Tyrosine Phosphatases, OsPFA-DSP2 and AtPFA-DSP4, Negatively Regulate the Pathogen Response in Transgenic Plants

    Get PDF
    Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H2O2) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H2O2 and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants

    Functionally Redundant RXLR Effectors from <em>Phytophthora infestans</em> Act at Different Steps to Suppress Early flg22-Triggered Immunity

    Get PDF
    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans
    corecore