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Abstract

Background: The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial
poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process.
Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report
we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis.

Results: The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The
task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In
the second step, a support vector machine (SVM) is applied to predict the class of each pixel belonging to the
foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from
the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant
pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS
mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained
through the automatic analyses were further verified on biochemical and transcriptome levels.

Conclusion: This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in
leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this
algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune
system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in
animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily
extended to other detection tasks, which also rely on color information, or even extended to other features.

Background
Numerous bacteria, pathogenic to humans and other
mammals, are found to thrive also on plants, Salmonella
enterica, Pseudomonas aeruginosa, Burkholderia cepa-
cia, Erwinia spp., Staphylococcus aureus, Escherichia coli
O157:H7, and Listeria monocytogenes are able to infect
both animal and plant organisms [1-5]. Among these,
Salmonella, a genus of Gram-negative enteropathogenic
bacteria, are the causal agents of both gastroenteritis and
typhoid fever. They are responsible for an estimated one
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million casualties and about 100 million human infections
annually. Not only in developing countries in Africa or
South-East Asia, where typhoid and paratyphoid fever are
unfortunately still prevalent, but also in developed com-
munities salmonellosis is still not vanquished. The most
common mode of infection in humans is by ingestion of
contaminated food or water.

Plants can be the source of infection
Many reports have linked food poisoning with the con-
sumption of Salmonella-contaminated raw vegetables and
fruits (for review see [2,6]). A large study conducted in
the European Union revealed that in 2007, 0.3% of prod-
ucts were infected with Salmonella bacteria [7], during the
same time in UK, the Netherlands, Germany, and Ireland
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0.1 to 2.3% of pre-cut products were contaminated [7]. In
the USA, the proportion of raw food-associated salmonel-
losis outbreaks increased from 0.7% in the 1960s to 6%
in the 1990s [8], and crossed 25% in recent years [9]. In
order to monitor the molecular subtype pattern of the out-
break strains a national program (PulseNet) was created
in the USA [10]. This program significantly improved the
identification of outbreaks and their sources. Most studies
on Salmonella-plant interactions suggested an epiphytic
lifestyle of Salmonella on plants. However, a growing body
of evidence points to an active process in which bacteria
infect various plants and use them as viable hosts [11-20].
In this report we developed an automatic algorithm to
quantify the symptoms caused by Salmonella infection on
Arabidopsis plants. The algorithm is designed to attribute
image pixels into one of the two classes: healthy and
unhealthy. We show that it outperforms other algorithms
developed for this task. It was tested on infection with
the non-pathogenic E. coli and the plant pathogen Pseu-
domonas syringae and subsequently used to study the
interaction between plant host and Salmonella wild type
and T3SS mutants. We proved that T3SS mutants of
Salmonella are unable to suppress the plant defense mech-
anisms. Results obtained through the automatic analyses
were further verified on biochemical and transcriptome
levels.

Automatic classification as key concept to objective
analysis
During the last few years, image classification has proved
increasingly useful in biology, as numerous tasks have
been simplified with the help of automated image clas-
sification [21-23]. Plant diseases need to be controlled
for at least two reasons: to maintain the quality of food
produced by farmers around the world and in order to
reduce the food-borne illnesses originated from infected
plants [24]. Thus, automatic identification of “unhealthy”
regions in leaf images is a useful tool for various biological
research projects aiming the control of diseases or char-
acterization of plant defense mechanisms [25,26]. There
is a wide variety of plant diseases caused by either envi-
ronmental factors (nutrition, moisture, temperature, etc.)
or by other organisms (fungi, bacteria, viruses). However,
in most cases the common symptom is the change of the
leaf color. A good color variation model can be employed
to distinguish “healthy” and “unhealthy” regions in leaf
images. A probabilistic algorithm, employing a Gaussian
mixture model (GMM) and a Bayesian classifier to classify
disease symptoms in Arabidopsis plants was presented
in [27]. However, because the estimation of a robust
GMM is not always possible from the real data, results
from Bayes-like classifiers can be inaccurate. To overcome
this limitation we propose a different classification strat-
egy. The algorithm described in this report uses color

feature space as input for learning algorithm (Support
Vector Machine (SVM)) which classifies the pixels of leaf
images.

Biological Background
Type III secretion system is responsible for effectors
delivery
Salmonellosis develops after the bacteria enter epithelial
cells of the intestine [28]. Studies of the infection mech-
anisms in animals have shown that Salmonella actively
remodel the host cells physiology and architecture, and
suppress the host immune system by injecting a cock-
tail of effectors delivered by Type III Secretion Sys-
tems (T3SSs). Salmonella enterica subsp. enterica has
two distinct T3SSs, T3SS-1 and T3SS-2, encoded by the
Salmonella Pathogenicity Islands (SPI) SPI-1 and SPI-2,
respectively [29,30]. T3SS-1 secretes at least 16 proteins
of which 6 were shown to interact with the host signal-
ing cascades and the cytoskeleton. T3SS-2 secretes at least
19 Salmonella enterica-specific effector proteins that are
involved in survival and multiplication within the host cell
[31,32]. The expression and the secretion of SPI-1 and
SPI-2 encoded effectors are tightly regulated. Recently,
a sorting platform for T3SS effectors was reported that
determines the appropriate hierarchy for protein secre-
tion [33]. In this study, the authors identified the cyto-
plasmic SpaO-OrgA-OrgB complex, which enables the
sequential delivery of translocases before the secretion of
the actual effectors. Furthermore, the authors described
the role of specific chaperones in the recognition and
loading of effectors into the sorting SpaO-OrgA-OrgB
complex. In conclusion, it was postulated that similar sort-
ing platforms might exist in other T3SSs as their compo-
nents are widely conserved. Many recent reports suggest
that the mechanisms used by Salmonella to infect animal
and plant hosts might be similar [20,34].

Effector proteins defeat immune system
In the battle between pathogen and its host, the pathogen
needs to suppress the host immune system in order to
establish a successful infection. The early line of immu-
nity relies on the recognition of conserved pathogen-
associated molecular patterns (PAMPs) by host-encoded
pattern recognition receptors (PRRs) and thereby the acti-
vation of an array of defense responses called PAMP-
triggered immunity (PTI). The best-studied PAMP in
plants is flg22, a conserved 22 amino acid peptide from
the bacterial flagellar protein flagellin, recognized by the
PRR FLAGELLIN INSENSITIVE 2 (FLS2) [35]. Dur-
ing infection, pathogens secrete effectors with the aim
to suppress PTI and cause effector-triggered suscepti-
bility (ETS). In a second layer of defense, intracellular
resistance proteins (R-proteins) recognize pathogen effec-
tors and activate effector-triggered immunity (ETI). The
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plant pathogen Pseudomonas syringae injects about 40
effectors into plant cells. Among these, AvrPto, AvrP-
toB and HopAI1 attenuate the flg22-induced defense
responses [36-38]. Strikingly, HopAI1 is also present in
animal/human pathogens such as Shigella spp. (OspF)
[39,40] and Salmonella spp. (SpvC) [41], where it inter-
acts with the mitogen-activated protein kinases (MAPKs)
ERK1/2 and p38. The role of multiple Salmonella effec-
tors in animal infection has been described (reviewed
in [42]), but a functional proof of Salmonella effector
action in plants is still missing. Nonetheless, several lines
of evidence point to an active interaction between these
bacteria and plant hosts.

Salmonella suppresses plant defenses
Two very recent studies report the suppression of the
plant immune system by Salmonella [34,43]. The authors
showed that in contrast to wild type living bacteria, dead
or chloramphenicol treated bacteria elicited an oxida-
tive burst and pH changes in tobacco cells. A similar
response was provoked by the invA− mutant, which has
no functional SPI-1 T3SS [34]. Those results suggest that
Salmonella depends on the secretion of effectors dur-
ing plant infection and actively suppresses the immune
response. We observed similar phenomena during infec-
tion of Arabidopsis [43]. Salmonella T3SS mutants were
compromised in virulence towards the wild type Col-0
plants. Comparison between global transcriptome profiles
of Arabidopsis plants infected with wild type Salmonella
or the prgH− (T3SS-1) mutant revealed 649 genes, which
are upregulated upon challenge with prgH− mutant but
not with the wild type Salmonella. GO term enrichment
analysis (AmiGO version 1,7) [44] of these 649 prgH−-
specific genes showed an overrepresentation of genes
related to responses to biotic stress, relations with other
organisms and defense mechanisms [43]. Moreover, chal-
lenge with T3SS mutants provoked stronger symptoms on
Arabidopsis plants suggesting that those mutants are not
able to suppress plant defenses. Those symptoms could
be, at least to some extent, part of the hypersensitiv-
ity response (HR). HR is a common defense mechanism
against biotrophic and hemibiotrophic pathogens, result-
ing in localized cell death and therefore arresting the
proliferation of pathogen. However, successful pathogenic
bacteria evolved mechanisms to suppress this resistance
mechanism. In a simplified manner one could describe
a very fast and strong occurrence of chlorotic and dead
tissues after infection with Salmonella as resistance mech-
anism. On the other hand, necrotic and lysed tissues sug-
gest no resistance capabilities. This distinction served as
the base for an automatic analysis of infection symptoms
caused by wild type Salmonella and four distinct T3SS
mutants as well as the plant pathogenic Pseudomonas
syringae and the nonpathogenic E. coli.

Image-Based Classification
A good color variation model can be employed to dis-
tinguish “healthy” and “unhealthy” regions in leaf images.
A probabilistic algorithm, employing a Gaussian mixture
model (GMM) and a Bayesian classifier for classifying dis-
ease symptoms in Arabidopsis plants was presented in
[27]. However, results from Bayes-like classifiers can be
inaccurate, because the estimation of a robust GMM is not
always possible from real data. To overcome these limi-
tations we propose here a different classification strategy.
The algorithm described in this paper uses color feature
space as input to a well-known machine learning algo-
rithm (Support Vector Machine (SVM)) to classify the
pixels of a leaf image. Figure 1 presents an overview of
the steps described in this paper. First a segmentation
method, described in section Segmentation, is applied to
obtain a binary image with only foreground and back-
ground information. Each pixel belonging to the fore-
ground region is then given as an input to a linear SVM
classifier (described below) to predict the class to which it
belongs. After identification of all pixels belonging to the
foreground, the neighborhood information is used to alter
the result of pixels classified as “unhealthy”. The follow-
ing neighborhood-check method is described in section
Neighborhood. Parts of this work have been previously
published in [45].

Segmentation
In the first step, we needed to separate the pixels belong-
ing to a leaf (foreground) and not belonging to the leaf
(background) in the input image. The input used in
this study were leaf images with almost monochromatic
background. Besides reducing the computational cost in
the next step, a good segmentation method can also
improve the overall result by eliminating any misclassi-
fication outside the leaf boundary. Therefore, we divide
the image into foreground and background so that only
the pixels belonging to the foreground are considered
for classification in the next step. The binary segmenta-
tion of an image I :� → [0, 1]3 ⊂ R

3
1 with � ⊆ R

2
1 can

be seen as separation of the image plane � into dis-
joint regions �obj and �bgd, with � = �obj ∪ �bgd ∪ �,
where � denotes the contour of the segmentation. So
we are looking for a binary image u :� → {0, 1}. The
most influential region based image segmentation model
was introduced by Mumford and Shah in 1989 [46].
Many models based on this functional and its derivatives
have been proposed, e.g. [47,48]. In this study, we used
the segmentation method proposed in [27]. The method
uses a convex energy functional [49] but with the I1I2I3
color space [50] instead of HSV. Following [49] a con-
vex energy functional in the I1I2I3 color space can be
written as:
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Figure 1 Overview of the proposed algorithm. Input image is a Arabidopsis leaf with almost monochromatic background. First, segmentation
method is applied to obtain the pixels belonging to the leaf. Second, each pixel belonging to the leaf is classified using linear SVM classifier. Finally,
the output from classifier is further refined through neighborhood-check method to obtain the output image.

E(u, μobj, μbgd) =
∫
�

(
f (I123(x), μobj) − f (I123(x), μbgd)

)

× u(x)dx + λ

∫
�

|∇u(x)|dx, (1)

with

f (I123(x), μ) = w1([I123(x)]I1 − μI1)
2

+ w2([I123(x)]I2 − μI2)
2

+ w3([I123(x)]I3 − μI3)
2 (2)

denoting a weighted squared sum of the individual chan-
nels. For the results presented in this paper we used
wI1 = 0.1 and wI2 = wI3 = 0.45. As an additional input
we used mean values for the foreground μobj and back-
ground μbgd and a smoothing parameter λ ∈ R. [I123(x)]In
denotes the value of pixel x for the color channel In. The
desired segmentation is a binary image u :� ⊆ R

2 →
{0, 1}. We minimize (1) for real-valued u using succes-
sive over-relaxation (SOR), as in [49,51] and binarize the
solution to obtain the globally optimal segmentation.

SVM classification
Having obtained a binary image u :� ⊆ R

2 → {0, 1}, we
classified each pixel belonging to �obj into “unhealthy” or
“healthy” regions. For this purpose we use a state-of-the-
art machine-learning algorithm, support vector machine
(SVM), that have found a wide acceptance in recent years
due to its ability to classify linear and non-linear data.
SVMs have been applied with great success in many chal-
lenging classification problems processing large data sets.
The basic concept was introduced in [52]. In our work
we will use a modified maximum margin idea, called Soft
Margin, which allows the handling of not perfectly lin-
ear separable data. It is based on learning from examples,
which means, it requires a separate set of training and
testing data. The training algorithm builds a model that
predicts the class of unknown input data.

We needed a labeled training data, which serves as an
input for the learning function. For training we chose
40.000 pixels of leaf images randomly from all available
images. Then we hand-labeled every chosen pixel into
one of three classes: healthy, unhealthy and background.
Like many other pixel-based classification methods, we
exploit the color variation property of image co-ordinates
in order to form a decision model. Since the components
of I1I2I3 color space [50] are uncorrelated, statistically it is
the best way to detect color variations. While I1 contains
the illumination information, I2 and I3 mainly contain
color information. Hence, we used only I2 and I3 in order
to provide invariance to illumination changes. Thus the
training data comprise of 2D color values, selected from
“healthy” and “unhealthy” leaf images and labeled into the
two different classes.

Training phase - offline
Suppose we have L number of training vectors belonging
to two different classes, (xi, yi) where i = 1, . . . , L and yi is
either 1 “healthy” or -1 “unhealthy”, indicating the class to
which xi belongs. SVM is based on the concept of finding
a hyperplane which can be described by a set of points
satisfying the equation:

w · x + b = 0, w ∈ R
n, x ∈ R

n, b ∈ R (3)

where w is normal to the hyperplane and b/||w|| is the
perpendicular distance from the hyperplane to the origin.
The goal here is to choose w and b so as to maximize
the margin between two parallel hyperplanes H1 and H2
(see Figure 2). Thus, our training data can be described by
equation:

yi(w · xi + b) − 1 ≥ 0 ∀i (4)

Considering the Soft Margin idea we can reformulate (4)
as

yi(w · xi + b) − 1 + ξi ≥ 0 ∀i, (5)
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Figure 2 Hyperplane. Hyperplane through two linearly separable
classes. Points on the hyperplanes are called support vectors and
form the basis for predicting the class of unlabeled data.

with slack variables ξi, which measure the degree of mis-
classification of the data xi.

The training part (Additional file 1: Figure S1) of SVM
algorithm finds a w that leads to the largest b. It can be
solved by finding the solution of following optimization
problem:

min
w,ξ ,b

{
1
2
||w||2+C

∑
i

ξi

}
such that yi(w·xi+b)−1+ξi ≥0∀i

(6)

It is transformed into its dual form by using Lagrangian
formalization:

L(w, b, α, ξ , β) = 1
2
||w||2+C

∑
i

ξi−
L∑

i=1
αi

[
yi(w · xi + b)

− 1 + ξi] −
∑

i
βiξi

(7)

where αi, βi are non-negative Lagrange multipliers.
According to [53], the final dual optimization problem can
be written as:

maximize LD =
L∑

i=1
αi − 1

2
∑

ij
αiαjyiyjxT

i xi

subject to
∑

i
αiyi = 0 and 0 ≤ αi ≤ C ∀i

(8)

Note that the dual form requires only the dot prod-
uct of each input vector xi to be calculated. Equation (8)
is a convex optimization problem and QP (Quadratic

Programming) solver is run on it in order to obtain α, from
which we can get w:

w =
L∑

i=1
αiyixi (9)

The training cases with αi > 0 are called support vec-
tors, or sometimes margin points, they determine the
solution. Any data point which is a support vector will
have the following form:

ys(w · xs + b) = 1 (10)

Using any support vector, b can be derived from
equations 9 and 10 (see [53,54] for detailed derivation):

b =
∑
s∈S

(ys −
∑
m∈S

αmymxm.xs) (11)

Where S denotes the set of indices of the support vec-
tors. S is determined by finding the indices i where αi > 0.
Instead of using an arbitrary support vector xs, it is better
to take an average of the support vectors in S. Thus, the
training phase of SVM gives w and b which is used later to
compute the class of unknown vectors. Since the training
phase is time consuming, it is done offline.

Prediction phase - online
In the prediction phase, all pixels labeled as foreground
pixel in the segmentation step are classified into one of the
two classes - “healthy” or “unhealthy”. Each new pixel, x′ is
classified by evaluating:

y′ = sign(w · x′ + b) (12)

where w and b are obtained from the training part of the
SVM algorithm.

Although, using binary SVM gives good performance in
most of the cases, it still relies on a good segmentation
method in step 2, which means that if pixels are labeled as
foreground outside the boundary of the leaf then the SVM
should also classify them into one of the two classes. As
an example in Figure 3, we can see that due to an error in
the segmentation, there are pixels outside the leaf region
marked as “unhealthy”. Segmentation error occurs when
a prominent shadow of the leaf is present in the image,
due to which the proposed segmentation method labels
pixels inside the shadow region as foreground. To make
the SVM classifier more efficient we can classify each pixel
into one of the three classes: “healthy”, “unhealthy” and
background. Inherently, SVMs are binary classifiers it is
however easily possible to do a multi-class classification
with SVMs by building a set of one-verses-one classifiers.
In this approach, classification is done by a max-wins vot-
ing strategy, in which every classifier assigns the instance
to one of the two classes, then the vote for the assigned
class is increased by one vote, and finally the class with the
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Figure 3 Multi-class SVM. Top image (a) shows output from the binary SVM classifier, where unhealthy pixels outside the leaf boundary are
noticeable. This is due to prominent shadow near the leaf boundary which is labeled as foreground pixels in the segmentation step. We can
overcome this problem by using a multi-class SVM (b), where each pixel is classified into three classes: healthy, unhealthy and background.

most votes determines the instance classification. Figure 3
compares the result with two-class and three-class SVM.

Neighborhood-Check
Output from the classification step shows a high num-
ber of isolated pixels labeled as “unhealthy”, which maybe
be perceived by human eye as without any symptoms.
This is due to the fact that single pixel is too small for an
human eye to be recognized and usually we see a com-
bination of pixels. Another possibility could be a pixel
within an “healthy” region that have similar color values
as the one from infected region which makes the classi-
fier to mark it as “unhealthy” one. Here, we exploit the
fact that usually the infected regions are densely populated
with infected pixels. We can, therefore, use the neigh-
borhood classification information to alter the result of
isolated pixels, classified as “unhealthy”. This step works as
follows: For each (xi, yi) with yi = −1 (unhealthy), define
the number of pixels which are classified as unhealthy in
the neighborhood radius n ∈ Z as ci. We perform the
following:

if ci <
(2n + 1)2 − 1

2
, then set yi = +1 (healthy)

(13)

We used n = 2 to obtain the results presented in this
report, because using neighborhood radius of n = 1
slightly improves the result from SVM classifier though
not as good as using 2 or 3. Although neighborhood
radius of 2 or 3 shows almost the same effect, we choose
n = 2 to reduce the computational cost. Figure 4 shows
the effect of using n = 1, 2 and 3. Figure 5 shows another
example where the result from step 2 could be improved
remarkably with the help of the neighborhood-check.

Classification Results
The classification algorithm has been tested extensively
on more than 1200 images of infected leaves. The
input images were images of infected leaves with nearly
monochromatic background and the output is the clas-
sified image with marked “unhealthy” regions. It also
provides an objective measurement for the disease rate.
Figure 6 shows some outputs from the classification algo-
rithm described above. The results obtained from this
algorithm were convincing and could be easily used for
biological experiments. Figure 7 shows a comparison
between the proposed and a probabilistic method [27].
We extended the probabilistic algorithm with the pro-
posed neighborhood-check to have a fair comparison.
The proposed algorithm, which combines the accuracy of
SVM with a neighborhood-check method, outperforms
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Figure 4 Different radius parameter used in this study.
Neighborhood radius could be varied to obtain better result. We can
see from the figure that neighborhood radius, n = 2 and n = 3 yields
almost the same result. Using n = 1 improves the result from SVM
classifier, (a) but not as good as (b) and (c).

the probabilistic method. The Bayesian classifier leave
some unhealthy region in leaf unmarked. Moreover, there
are some marks near the boundary of the leaf which are
wrongly classified as unhealthy. These problems are over-
come by using multi-class SVM. SVMs are more robust
in separating those data. Experiments prove that higher
accuracy could be achieved with SVM. Here, we use linear
SVM because it is computationally efficient and avoids the
complexities of tuning several parameters, which is the
case of non-linear kernels.

In addition, we split 9797 data points from the labeled
training set and classified this data to get an objective per-
formance measure. The GMM approach reached a correct
classification rate of 91.5%. The proposed SVM approach
could improve the results, so that a correct classification
rate of 95.8% could be achieved.

Figure 5 Neighborhood check. Input image is shown in (a), (b) is
the output from SVM classifier. It shows high number of pixels marked
as unhealthy while the human eye perceive them as healthy. In an
attempt to alter the result of those isolated pixels, neighborhood-
check method is applied. (c) is the result from neighborhood-check
and matches well with the visual perception of human observer.

Results
Photo-based analysis of symptoms caused by different
bacteria in Arabidopsis
In order to test the algorithm described above, we per-
formed first infections with two bacteria of known viru-
lence towards Arabidopsis. We used the nonpathogenic
E. coli K12 DH5α strain and the virulent Pseudomonas
syringae pathovar tomato DC3000 strain as controls. Bac-
teria were cultivated until early logarithmic phase, washed
in 10 mM MgCl2, the infiltration solution was adjusted
to OD600 = 0.1 and syringe-infiltrated into Arabidop-
sis leaves. Arabidopsis plants were observed during 5
days after infiltration (DAI), detached leaves were pho-
tographed and without any further processing sent to the
computing algorithm. As expected the control infiltra-
tion with 10 mM MgCl2 provoked only slight symptoms
in Arabidopsis leaves (Figure 8b). Similarly, infiltration
with E. coli provokes visible symptoms only after 4 DAI
(Figure 8c). On the contrary, the virulent Pseudomonas
strain causes visible necrotic lesions already at 2 DAI, at
4 DAI symptoms reach almost the totality of leaf sur-
faces (Figure 8d). Calculations made on the base of photos,
reflect perfectly the macroscopic observations (Figure 8e).

T3SS mutants cause stronger symptoms than the wild type
bacteria
Our recent results suggest that T3SSs play a significant
role in virulence towards Arabidopsis [43]. We showed
that mutants compromised in both Salmonella T3SSs pro-
liferate slower in Arabidopsis leaves than the 14028s wild
type bacteria [43]. Salmonella makes use of SPI-1 and
SPI-2 T3SSs injecting several effectors with different func-
tions at different stages of the infection [55,56]. Here, we
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Figure 6 Classification Results. Top row shows input images and the bottom row shows outputs from the proposed classification algorithm.

Figure 7 Comparison between proposed and probabilistic approach. An example image showing result from probabilistic [27] and the
proposed SVM classification. Difference is clearly noticeable in the right-most leaf in the image, where leaf portions are left unmarked by Bayesian
classifier. Also pixels outside the leaf boundary (see second from right in (b)) are marked. Higher accuracy can be achieved by using the SVM
classifier (c).
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Figure 8 Symptoms caused by different bacteria. Analysis of
symptoms caused by the non-pathogenic E. coil K12 strain DH5α and
the pathogenic Pseudomonas syringae pathovar tomato DC3000.
Leaves from 6-week-old Arabidopsis plants were infiltrated with
bacterial solution at OD600 = 0.1. a-d: Macroscopic observations of
symptom development from 0 to 5 day after infiltration (DAI) with
(a): water (mock control), (b): 10 mM MgCl2 (buffer control), (c): E. coli,
(d): Pseudomonas syringae. (e): Calculated average percentages of leaf
surfaces showing infection symptoms. Five leaves per time point
were photographed. Experiment was repeated five times.

wondered whether the reduced virulence is reflected in
symptoms caused by those mutants in Arabidopsis plants
and whether those symptoms can be used for automatic
screening/analysis purposes. To this end, two mutants in
SPI-1 encoded T3SS (prgH−andinvA−) and two mutants
in SPI-2 encoded T3SS (ssaV − and ssaJ−) were infil-
trated into Arabidopsis leaves. Subsequently lesions were
evaluated during 5 following days and expressed as per-
centage of total leaf surface. Infiltration with SPI-1 T3SS
mutants (prgH− and invA−) showed stronger symp-
toms from the first day onwards, if compared to infec-
tion with the wild type 14028s Salmonella (Figure 9).
PrgH and InvA proteins are the parts of the outer and
inner membrane-spanning rings of the Salmonella T3SS-
1 apparatus respectively [55,57-59]. Similarly, SPI-2 T3SS
mutants (ssaV − and ssaJ−) provoked also stronger symp-
toms on Arabidopsis leaves than the 14028s wild type
strain (Figure 10). SsaV and SsaJ proteins are necessary
for constructing the core T3SS apparatus inside and out-
side of the bacterial membranes [55]. The infiltration
experiments suggest the ability of wild type Salmonella
Typhimurium to suppress the plant immune system by

Figure 9 Symptoms caused by T3SS-1 mutants. T3SS-1 mutants
cause more pronounced symptoms in Arabidopsis leaves. Wild type
Salmonella or mutants in the SPI-1 encoded T3SS were infiltrated into
Arabidopsis leaves; symptoms were analyzed during 5 DAI. a-d:
Macroscopic observations of symptoms development from 0 to 5 DAI
with (a): 10 mM MgCl2 (buffer control), (b): wild type 14028s strain,
(c): prgH− mutant, (d): invA− mutant. (e): Calculated average
percentages of leaf surfaces showing infection symptoms. Five leaves
per time point were photographed. Experiment was repeated five
times. ∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t test).

lowering the manifestation of hypersensitivity response
(HR) to a level observed after infiltration with E. coli
(Figure 11). A comparison between infection with non-
pathogenic E. coli DH5α and highly pathogenic Pseu-
domonas syringae DC3000 showed significant lesions in
Pseudomonas-infiltrated leaves and relatively mild symp-
toms in E. coli-infiltrated leaves (Figure 11). Pseudomonas
syringae infiltrated Arabidopsis leaves showed necrosis
and dark color patches.

T3SS mutants cannot suppress the induction of the
pathogenesis-related gene PDF1.2
In order to verify the observed suppression of plant
immune responses we analyzed the expression level
of the PDF1.2 gene, which is known to respond to
Salmonella challenge [20]. Fourteen-day-old Arabidopsis
plants, grown on MS/2 agar medium, were transferred
to liquid MS/2 medium 24 hours before bacterial inoc-
ulation. Wild type S. Typhimurium 14028s and prgH−,
invA−, ssaV − and ssaJ− mutants were grown on liquid
LB medium with respective antibiotics, centrifuged and
washed in 10 mM MgCl2. MS/2 medium containing the
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Figure 10 Symptoms caused by T3SS-2 mutants. Infection
symptoms caused by the T3SS-2 mutants in Arabidopsis leaves. Wild
type Salmonella or mutants in the SPI-2 encoded T3SS were infiltrated
into Arabidopsis leaves; symptoms were analyzed during 5 DAI. a-d:
Macroscopic observations of symptoms development from 0 to 5 DAI
with (a): 10 mM MgCl2 (buffer control), (b): wild type 14028s strain,
(c): ssaV− mutant, (d): ssaJ− mutant. (e): Calculated average
percentages of leaf surfaces showing infection symptoms. Five leaves
per time point were photographed. Experiment was repeated five
times. ∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t test).

plants was inoculated with bacteria with final OD600 =0.1.
Whole plant materials were collected at 0, 12, 24 and 48
hours post inoculation. Quantitative reverse transcription
PCR (qPCR) was done with PDF1.2 primers and normal-
ized to the expression of the UBQ4 (At5g25760) house-
keeping gene. Figure 11a-b shows the relative expression

Figure 11 Symptoms caused by virulent and avirulent bacteria.
Comparison of symptoms caused by the virulent Salmonella wild type
14028s, the non-pathogenic E. coli K12 and the plant pathogen
Pseudomonas syringae. Average symptoms were calculated on the
base of photos taken during 5 DAI. Five leaves per time point were
analyzed, experiments were repeated 5 times.
∗p ≤ 0.05; ∗ ∗ p ≤ 0.005; ∗ ∗ ∗p ≤ 0.0005 (Student’s t test).

of PDF1.2 gene after challenge with T3SS-1 (Figure 12a)
and T3SS-2 (Figure 12b) mutants in comparison to the
challenge with the 14028s wild type bacteria. The wild
type S. Typhimurium strain 14028s showed its poten-
tial to decrease the expression of PDF1.2 in Arabidopsis
after the initial 24 hours induction. However, all of the
mutants used in the study, except invA−, showed their
inability to inhibit the plant defense, which is indicated by
the increased expression of PDF1.2 in Arabidopsis. These
results are in line with the hypothesis that Salmonella
suppresses the plant defense systems using T3SSs.

Infection with T3SS mutant results in longer activation of
MAP kinases
MAP kinases are activated in plants by numerous
pathogens, including Salmonella [20,60]. Activation of
MAP kinases 3 (MPK3) and MPK6 pathways restricts
Salmonella proliferation in Arabidopsis [20]. In order

Figure 12 Expression pattern of PDF1.2. Expression pattern of
PDF1.2 gene in Arabidopsis Col-0 plants challenged with wild type
Salmonella or T3SS mutants. Total RNA was extracted from
2-week-old seedlings inoculated with bacteria for hours as indicated.
Relative expression levels of PDF1.2 were normalized to the
expression of UBQ gene. (a): Transcriptional response to the T3SS-1
mutants prgH−andinvA− . (b): Transcriptional response to the T3SS-2
mutants ssaV−andssaJ− .
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to demonstrate the activation of AtMPK3 and AtMPK6,
the phosphorylation status was tested with an anti-
body against the phosphorylated form of the mammalian
homologue: the extracellular-signal regulated kinases
(ERK) 1/2. An inoculation experiment with 14028 s wild
type and SPI-1 prgH− mutant was performed and acti-
vation checked at different time points after inoculation
(Figure 13). S. Typhimurium 14028 s as well as the SPI-
1 mutant were found to activate the MAP kinases at 15
and 30 minutes after infection (MAI) (43kDa and 42kDa
bands), the signal decreases however at 60 MAI. After
infection with the SPI-1 mutant the initial activation at 15
and 30 MAI, remained until 60 MAI. This suggests the
necessity of T3SS in the suppression of the plant MAP
kinase signaling by Salmonella.

Discussion
Plants have sophisticated mechanisms by which they rec-
ognize pathogen-originated signals. In case of pathogen
attack, plants might initiate a rapid and intense activation
of defense reactions known as hypersensitive response
(HR). HR occurs within few hours and results in local-
ized cell death. Very often HR is the consequence of
effector-triggered immunity (ETI), which occurs when the
plant recognizes the effectors injected by the pathogen
into the plant cells. Rapid cell death or HR prevents the
bacteria from spreading systematically. Salmonella uses
diverse effectors to manipulate the cellular signals lead-
ing to the host defense response [42]. Salmonella enterica
subsp. enterica used in this study possesses two differ-
ent T3SS, encoded by Salmonella Pathogenicity Island 1
(SPI-1) and SPI-2. Both T3SSs secret different yet over-
lapping sets of effector proteins tat function at different
stages of the infection. However, many of the secreted
effectors can by translocated via both T3SSs. The stronger
symptoms seen in the leaves treated with the T3SSs
mutants if compared to the wild type Salmonella, indi-
cates the inability of Salmonella mutants to inhibit the
molecular mechanisms that finally lead to HR, and in

Figure 13 Activation of MAPKs. Phosphorylation status of MPK3
and MPK6 after treatment with Salmonella. Two-week-old seedlings
were treated with bacteria for minutes as indicated. Total proteins
were extracted and separated on SDS-PAGE. Phosphorylated form of
MAK3/6 were detected using the anti pERK1/2 antibody (αpERK1/2)
upper gel, the loading was done using αMPK6 antibody on parallel
membrane loaded with equal amount of proteins (20 μg). Arrows
indicates the 43kDa band representing the phosphorylated form of
MPK6.

consequence it suggests the necessity of such effectors
(and both functional T3SSs) for the infection of vege-
tal hosts. It is probable that both T3SSs are needed for
the immune suppression, however the effectors translo-
cated by the remaining T3SS in a mutant are sufficient to
elicit ETI. Giving the importance for human health, the
suppression of the animal immune system by Salmonella
is very intensely studied. We know already 44 effectors
which are injected by Salmonella into animal host cells,
and for many of them we know the function and the target
proteins [42]. Interestingly, very often bacterial effectors
target the MAPK cascades, which are important regula-
tors of the immune response in animals and plants. SpvC
from Salmonella spp. encodes a phosphothreonine lyase
that dephosphorylates the pTXpY double phosphorylated
activation loop in the ERK1/2 kinases [61-63]. Another
effector from Salmonella spp. the SptP inhibits phospho-
rylation and membrane localization of Raf kinase and
therefore the activation of the downstream ERK kinases
[64]. Although several Salmonella effectors have homo-
logues in plant pathogenic bacteria, the SpvC is present
in the Pseudomonas spp. as HopAI1, HopAO1 also from
Pseudomonas spp. on the other hand, is the homologue
of SptP, the function of Salmonella proteins in the inac-
tivation of the plant immune system remains unknown.
It is however very tempting to speculate that biochem-
ical features of those effectors are conserved between
animal and plant hosts, providing Salmonella (and other
pathogenic bacteria) with efficient tools for suppression of
the host immune system. Such suppression was reported
in two recent reports. Shirron and Yaron studied infec-
tion of tobacco plants with S. Typhimurium [34]. The
authors showed that in contrast to wild type living bac-
teria, dead bacteria elicited an oxidative burst and pH
changes in tobacco cells. Similar response was provoked
by the invA− mutant, which has no functional SPI-1
T3SS [34]. Those results suggest that Salmonella depends
on the secretion of effectors during infection of tobacco
leaves to actively suppress their immune responses. A gen-
eral transcriptome analysis performed in our laboratory
suggests a similar scenario [43]. Infection with the prgH−
mutant, but not with the 14028 s wild type, induces about
640 genes, the majority of which are related to defense
responses. Moreover, we showed that mutants impaired
in their T3SSs are less virulent towards Arabidopsis plants
then wild type bacteria [43]. Taken together, recently
published and presented results build a growing body
of evidences indicating that Salmonella, similarly to the
infection in animals, actively suppresses the plant defense
mechanisms. Whether this bacterium uses the same or
different effectors in order to achieve this goal is not
yet clear, it seems however to be acceptable to con-
clude that Salmonella uses the same T3SSs in plant and
animal infections.



Schikora et al. BMC Bioinformatics 2012, 13:171 Page 12 of 14
http://www.biomedcentral.com/1471-2105/13/171

Conclusions
This report presents an automatic pixel-based classi-
fication method for detecting “unhealthy” regions in
leaf images. This method has been tested extensively
with very promising results. Linear SVM has been used
to classify each pixel. We have also shown how the
results from SVM could be remarkably improved by
using the neighborhood-check technique. The proposed
method was compared to existing method and showed
a higher accuracy. We used this algorithm to study the
impact of the human pathogenic bacterium Salmonella
Typhimurium on plants immune system. The compari-
son between wild type bacteria and T3SS mutants showed
similarity in the infection process in animals and in plants.
The result obtained with the proposed algorithm and
also transcriptome and biochemical analyses suggest that
T3SSs are necessary for a successful infection of plants.
Plant epidemiology is only one possible application of the
proposed algorithm, it can be easily extended to other
detection tasks, which also rely on color information, or
even extended to other features.

Methods
Plant growth
Arabidopsis thaliana wild type Col-0 (NASC ID: N70000)
seeds were germinated on 1

2 MS media for around 2
weeks. The seedlings were then transferred to soil and
grown in short day chamber (7 hours of light) at 24°C for
additional 4 weeks.

Bacterial growth
Salmonella enterica subsp. enterica serovar Typhimurium
(ATCC 14028s), Salmonella T3SS mutants (all in the
14028s genetic background) and Escherichia coli K12
strain DH5α were grown on LB agar and liquid media
with required antibiotics. Pseudomonas syringae pathovar
tomato DC3000 was grown in King’s B medium con-
taining required antibiotics. prgH− and ssaV − mutants
were obtained from Prof. David Holden, Imperial College,
London. invA− and ssaJ− mutants were constructed in the
INRA Tours laboratory by Dr. Isabelle Virlogeux-Payant.

Leaf infiltration
Around 6-week-old Arabidopsis plants were chosen for
infiltration experiment. The cultured bacteria were spun
down, washed with 10 mM MgCl2 solution. Final optical
density (OD600) of infiltration solution was 0.1. Infiltration
was done via syringe on the abaxial surface of the leaves.

Analysis of lesions in leaves
For the analysis, images of leaves were captured at 5
consecutive days after infiltration. At least 5 leaves were
photographed per each time point and infiltration variant.
This experiment was repeated 5 times. Lesions in leaves

were analyzed with the help of an automated program cal-
culating the changed color in a proportion to the normal
color of the leaves. The diseased portion were calculated
in percentage and evaluated, cf. Section Image-Based
Classification. Altogether over 1200 images were evalu-
ated.

Bacteria inoculation
Around 2-week-old Arabidopsis plants were transferred to
1
2 MS liquid media and left undisturbed overnight. Bacte-
ria were washed in 10 mM MgCl2, and the liquid medium
was inoculated with bacteria at OD600 = 0.1. Whole plants
were collected at regular intervals for further analysis.

RNA extraction and reverse transcription
Extraction of total RNA was done with Trizol�
(Invitrogen) accordingly to manufacturer instructions.
Whole plants were collected in liquid nitrogen and
homogenized. Total RNA was extracted. All RNA sam-
ples were treated with DNase I (Fermentas International
Inc.). Complementary DNA (cDNA) was prepared with
the help of reverse transcriptase (qScript, Quanta Bio-
sciences) accordingly to manufacturer protocol. Equal
amount of 2 μg RNA from all samples was taken to ensure
the best possible gene expression levels analysis.

Quantitative PCR
After the preparation of cDNA, quantitative PCR was per-
formed in the Applied Biosystems 7500 FAST real-time
PCR system. SYBR green was used as a fluorescence dye
for the PCR reactions. 20 μl total volume reaction was
used and three repetitions were made for each of the sam-
ple. qPCR was done with the following primers: UBQ4:
forward primer: GCT TGG AGT CCT GCT TGG ACG,
reverse primer: CGC AGT TAA GAG GAC TGT CCG
GC; PDF1.2: forward primer: GTT TGC TTC CAT CAT
CAC CC, reverse primer: GGG ACG TAA CAG ATA
CAC TTG.

Western blot analysis
Whole plants were collected in liquid nitrogen, homog-
enized in a tissue homogenizer and total protein were
extracted in 200 μl of lysis buffer (25 mM TRIS
(pH = 7.8), 10 mM MgCl2, 15 mM EGTA, 75 mM NaCl,
1 mM DTT, 0.5 mM NaVO4, 1 mM NaF, 15 mM β-
glycerophosphate (Sigma-Aldrich), 15 mM 4-nitrophenyl
phosphate (Sigma), 0.5 mM PMSF, 5 μg/ml leupeptine
(Roche), 5 μg/ml aprotinin (Roche), 0.1% Tween 20).
After vigorous vortexing, samples were centrifuged at
14,000 rpm and supernatant, containing the proteins was
collected. Bio-Rad mini format 1-D electrophoresis sys-
tem was used for sodium dodecyl sulphate polyacry-
lamide gel electrophoresis (SDS-PAGE). 12% resolving
gel and 3.2% stacking gel were used. Equal amount
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of proteins (20 μg) was used for each sample. Pri-
mary antibodies: α-phospho-ERK 1/2 (Sigma-Aldrich),
AtMPK6 (Biolabs). Secondary antibody: Anti-Rabbit IgG
HRP-conjgate (Sigma-Aldrich).

Additional file

Additional file 1: Figure S1. Training data. Scatter plot of the used
training data. Only the color channels I2 and I3 are depicted. The healthy
points are marked as green squares. The blue circles correspond to
unhealthy training pixels. The background pixels are visualized with red
crosses.
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