610 research outputs found

    Understanding Homeowners' Renovation Decisions::Findings of the VERD Project

    Get PDF
    The VERD Study: In October 2011, the VERD project team at the University of East Anglia began a two-year research project investigating homeowners’ renovation decisions, funded by the UK Energy Research Centre (UKERC). This report and public conference summarises the findings, revealing why homeowners renovate and why they decide to improve their home energy efficiency

    Electronic structure and total energy of interstitial hydrogen in iron: Tight binding models

    Get PDF
    An application of the tight binding approximation is presented for the description of electronic structure and interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple canonical d-band description in comparison to a non orthogonal model including s and d bands. The transferability of our models is tested against known properties including the segregation energies of hydrogen to vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to quantum mechanical atomistic simulation of the effects of hydrogen on mechanical properties

    Reconstruction of 2D Al Ti on TiB in an aluminium melt

    Get PDF
    It has been widely considered that Al Ti is involved in the aluminium nucleation on TiB , although the mechanism has not been fully understood. In this paper molecular dynamics has been conducted to investigate this phenomenon at an atomistic scale. It was found that a two-dimensional Al Ti layer may remain on TiB above the aluminium liquidus. In addition, the results showed that this 2D Al Ti undergoes interface reconstruction by forming a triangular pattern. This triangular pattern consists of different alternative stacking sequences. The transition region between the triangles forms an area of strain concentration. By means of this mechanism, this interfacial Al Ti layer stabilizes itself by localizing the large misfit strain between TiB and Al Ti This reconstruction is similar to the hdp-fcc interface reconstruction in other systems which has been observed experimentally.EPSR

    Single-Particle Dynamics in the Vicinity of the Mott-Hubbard Metal-to-Insulator Transition

    Full text link
    The single-particle dynamics close to a metal-to-insulator transition induced by strong repulsive interaction between the electrons is investigated. The system is described by a half-filled Hubbard model which is treated by dynamic mean-field theory evaluated by high-resolution dynamic density-matrix renormalization. We provide theoretical spectra with momentum resolution which facilitate the comparison to photoelectron spectroscopy.Comment: 22 pages, 24 figures, comprehensive high-resolution study of single electron dynamics around a Mott metal-insulator transition, with momentum resolved spectral densities; slight changes due to referees' suggestion

    Magnetism: the Driving Force of Order in CoPt. A First-Principles Study

    Get PDF
    CoPt or FePt equiatomic alloys order according to the tetragonal L10 structure which favors their strong magnetic anisotropy. Conversely magnetism can influence chemical ordering. We present here {\it ab initio} calculations of the stability of the L10 and L12 structures of Co-Pt alloys in their paramagnetic and ferromagnetic states. They show that magnetism strongly reinforces the ordering tendencies in this system. A simple tight-binding analysis allows us to account for this behavior in terms of some pertinent parameters

    Stacking Characteristics of Close Packed Materials

    Get PDF
    It is shown that the enthalpy of any close packed structure for a given element can be characterised as a linear expansion in a set of continuous variables αn\alpha_n which describe the stacking configuration. This enables us to represent the infinite, discrete set of stacking sequences within a finite, continuous space of the expansion parameters HnH_n. These HnH_n determine the stable structure and vary continuously in the thermodynamic space of pressure, temperature or composition. The continuity of both spaces means that only transformations between stable structures adjacent in the HnH_n space are possible, giving the model predictive and well as descriptive ability. We calculate the HnH_n using density functional theory and interatomic potentials for a range of materials. Some striking results are found: e.g. the Lennard-Jones potential model has 11 possible stable structures and over 50 phase transitions as a function of cutoff range. The very different phase diagrams of Sc, Tl, Y and the lanthanides are understood within a single theory. We find that the widely-reported 9R-fcc transition is not allowed in equilibrium thermodynamics, and in cases where it has been reported in experiments (Li, Na), we show that DFT theory is also unable to predict it

    Иноязычная коммуникативная компетенция современного преподавателя технического вуза

    Get PDF
    В статье рассматриваются организационно-педагогические и методические условия формирования иноязычной коммуникативной компетенции преподавателя технического вуза на примере реализации программы повышения квалификации "Формирование профессиональной дидактической компетенции средствами английского языка". Иностранный язык становится инструментом для выполнения профессиональной деятельности современного преподавателя технического вуза

    Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals

    Get PDF
    Predictions of observable properties by density-functional theory calculations (DFT) are used increasingly often in experimental condensed-matter physics and materials engineering as data. These predictions are used to analyze recent measurements, or to plan future experiments. Increasingly more experimental scientists in these fields therefore face the natural question: what is the expected error for such an ab initio prediction? Information and experience about this question is scattered over two decades of literature. The present review aims to summarize and quantify this implicit knowledge. This leads to a practical protocol that allows any scientist - experimental or theoretical - to determine justifiable error estimates for many basic property predictions, without having to perform additional DFT calculations. A central role is played by a large and diverse test set of crystalline solids, containing all ground-state elemental crystals (except most lanthanides). For several properties of each crystal, the difference between DFT results and experimental values is assessed. We discuss trends in these deviations and review explanations suggested in the literature. A prerequisite for such an error analysis is that different implementations of the same first-principles formalism provide the same predictions. Therefore, the reproducibility of predictions across several mainstream methods and codes is discussed too. A quality factor Delta expresses the spread in predictions from two distinct DFT implementations by a single number. To compare the PAW method to the highly accurate APW+lo approach, a code assessment of VASP and GPAW with respect to WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These differences are an order of magnitude smaller than the typical difference with experiment, and therefore predictions by APW+lo and PAW are for practical purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains updated supplementary material

    Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides

    Full text link
    An accurate density-functional method is used to study systematically half-metallic ferromagnetism and stability of zincblende phases of 3d-transition-metal chalcogenides. The zincblende CrTe, CrSe, and VTe phases are found to be excellent half-metallic ferromagnets with large half-metallic gaps (up to 0.88 eV). They are mechanically stable and approximately 0.31-0.53 eV per formula unit higher in total energy than the corresponding nickel-arsenide ground-state phases, and therefore would be grown epitaxially in the form of films and layers thick enough for spintronic applications.Comment: 4 pages with 4 figures include
    corecore