480 research outputs found
Dynamics of Excited Electrons in Copper: Role of Auger Electrons
Within a theoretical model based on the Boltzmann equation, we analyze in
detail the structure of the unusual peak recently observed in the relaxation
time in Cu. In particular, we discuss the role of Auger electrons in the
electron dynamics and its dependence on the d-hole lifetime, the optical
transition matrix elements and the laser pulse duration. We find that the Auger
contribution to the distribution is very sensitive to both the d-hole lifetime
tau_h and the laser pulse duration tau_l and can be expressed as a monotonic
function of tau_l/tau_h. We have found that for a given tau_h, the Auger
contribution is significantly smaller for a short pulse duration than for a
longer one. We show that the relaxation time at the peak depends linearly on
the d-hole lifetime, but interestingly not on the amount of Auger electrons
generated. We provide a simple expression for the relaxation time of excited
electrons which shows that its shape can be understood by a phase space
argument and its amplitude is governed by the d-hole lifetime. We also find
that the height of the peak depends on both the ratio of the optical transition
matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse
duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole
lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta
tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured
for polycrystalline Cu.Comment: 6 pages, 6 figure
Effects of egg weight and length of storage on hatchability and subsequent growth performance of quail
This study was to investigate the effects of hatching egg weight and length of storage period on hatchability and subsequent growth performance of quail. A total of 2304 eggs was collected from a quail flock, aged 17 weeks. The eggs were divided into four groups on the basis of storage periods of 1, 3, 5 or 7 days. Prior to egg storage, the eggs in each group were classified according to egg weight, as small: 12.51 g. Hatchability of total and of fertile eggs increased significantly with an increase in egg weight but was not affected by duration of egg storage. There were no significant effects of egg storage period on body weight and feed conversion ratio of the progeny at six weeks of age. The average body weight of the quail produced from heavier eggs (large and jumbo) was significantly higher than those from the smaller eggs. It is recommended that the storage period should be no longer than 3 days. Eggs heavier than 11.50 g were found to be the most suitable for successful hatching and subsequent growth performance.
Keywords: Quail, Egg weight, Storage period, Hatchability, Growth performance
South African Journal of Animal Science Vol.33(4) 2003: 242-24
Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser
This Letter reports a nonlinear directional waveguide coupler written by ultrafast laser in gallium lanthanum sulfide chalcogenide glass. The nonlinear waveguide device is tested with laser pulses input in two orthogonal polarizations, and all optical switching at 1040 nm between the two coupled waveguides is observed at a peak fluence of 16 GW?cm2. The spectra and autocorrelation measurement from the waveguide outputs show dominant nonlinear effects and negligible dispersion for light propagation in both channels. © 2014 Optical Society of America
Nonlinear optical localization in embedded chalcogenide waveguide arrays
We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass. © 2014 Author(s)
Lifetime of d-holes at Cu surfaces: Theory and experiment
We have investigated the hole dynamics at copper surfaces by high-resolution
angle-resolved photoemission experiments and many-body quasiparticle GW
calculations. Large deviations from a free-electron-like picture are observed
both in the magnitude and the energy dependence of the lifetimes, with a clear
indication that holes exhibit longer lifetimes than electrons with the same
excitation energy. Our calculations show that the small overlap of d- and
sp-states below the Fermi level is responsible for the observed enhancement.
Although there is qualitative good agreement of our theoretical predictions and
the measured lifetimes, there still exist some discrepancies pointing to the
need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.
Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
Both theoretical and experimental results for the dynamics of photoexcited
electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and
Ni are presented. A model for the dynamics of excited electrons is developed,
which is based on the Boltzmann equation and includes effects of
photoexcitation, electron-electron scattering, secondary electrons (cascade and
Auger electrons), and transport of excited carriers out of the detection
region. From this we determine the time-resolved two-photon photoemission
(TR-2PPE). Thus a direct comparison of calculated relaxation times with
experimental results by means of TR-2PPE becomes possible. The comparison
indicates that the magnitudes of the spin-averaged relaxation time \tau and of
the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation
times for the different ferromagnetic transition metals result not only from
density-of-states effects, but also from different Coulomb matrix elements M.
Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated
reference
Obituary for Sydney Davison: the founder of progress in surface science
Catalysis and Surface Chemistr
Ultrafast Spin Dynamics in Nickel
The spin dynamics in Ni is studied by an exact diagonalization method on the
ultrafast time scale. It is shown that the femtosecond relaxation of the
magneto-optical response results from exchange interaction and spin-orbit
coupling. Each of the two mechanisms affects the relaxation process
differently. We find that the intrinsic spin dynamics occurs during about 10 fs
while extrinsic effects such as laser-pulse duration and spectral width can
slow down the observed dynamics considerably. Thus, our theory indicates that
there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure
- …