1,230 research outputs found
Probe-Configuration-Dependent Decoherence in an Aharonov-Bohm Ring
We have measured transport through mesoscopic Aharonov-Bohm (AB) rings with
two different four-terminal configurations. While the amplitude and the phase
of the AB oscillations are well explained within the framework of the
Landaur-B\"uttiker formalism, it is found that the probe configuration strongly
affects the coherence time of the electrons, i.e., the decoherence is much
reduced in the configuration of so-called nonlocal resistance. This result
should provide an important clue in clarifying the mechanism of quantum
decoherence in solids.Comment: 4 pages, 4 figures, RevTe
Temperature and magnetic-field dependence of the quantum corrections to the conductance of a network of quantum dots
We calculate the magnetic-field and temperature dependence of all quantum
corrections to the ensemble-averaged conductance of a network of quantum dots.
We consider the limit that the dimensionless conductance of the network is
large, so that the quantum corrections are small in comparison to the leading,
classical contribution to the conductance. For a quantum dot network the
conductance and its quantum corrections can be expressed solely in terms of the
conductances and form factors of the contacts and the capacitances of the
quantum dots. In particular, we calculate the temperature dependence of the
weak localization correction and show that it is described by an effective
dephasing rate proportional to temperature.Comment: 24 pages, 14 figure
Current-voltage correlations in interferometers
We investigate correlations of current at contacts and voltage fluctuations
at voltage probes coupled to interferometers. The results are compared with
correlations of current and occupation number fluctuations at dephasing probes.
We use a quantum Langevin approach for the average quantities and their
fluctuations. For higher order correlations we develop a stochastic path
integral approach and find the generating functions of voltage or occupation
number fluctuations. We also derive a generating function for the joint
distribution of voltage or occupation number at the probe and current
fluctuations at a terminal of a conductor. For energy independent scattering we
found earlier that the generating function of current cumulants in
interferometers with a one-channel dephasing or voltage probe are identical.
Nevertheless, the distribution function for voltage and the distribution
function for occupation number fluctuations differ, the latter being broader
than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added
reference
Transient electric current through an Aharonov-Bohm ring after switching of a Two-Level-System
Response of the electronic current through an Aharonov-Bohm ring after a
two-level-system is switched on is calculated perturbatively by use of
non-equilibrium Green function. In the ballistic case the amplitude of the
Aharonov-Bohm oscillation is shown to decay to a new equilibrium value due to
scattering into other electronic states. Relaxation of Altshuler-Aronov-Spivak
oscillation in diffusive case due to dephasing effect is also calculated. The
time scale of the relaxation is determined by characteristic relaxation times
of the system and the splitting of two-level-system. Oscillation phases are not
affected. Future experimental studies of current response may give us direct
information on characteristic times of mesoscopic systems
Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers
URL:http://link.aps.org/doi/10.1103/PhysRevLett.83.2362
DOI:10.1103/PhysRevLett.83.2362Molecular dynamics (MD) simulations and neutron diffraction experiments have been performed on n-dotriacontane ( n-C32D66) monolayers adsorbed on a graphite basal- plane surface. The diffraction experiments show little change in the crystalline monolayer structure up to a temperature of ~350K above which a large thermal expansion and decrease in coherence length occurs. The MD simulations provide evidence that this behavior is due to a phase transition in the monolayer in which intramolecular and translational order are lost simultaneously. This melting transition is qualitatively similar to the gel-to-fluid transition found in bilayer lipid membranes.Acknowledgment is made to the U.S. National Science Foundation under Grants No. DMR-9314235 and No. DMR-9802476, the Missouri University Research Reactor, and to the donors of The Petroleum Research Fund, administered by the ACS, for partial support of this research. We thank L. Criswell for assistance with the figures
QED theory of the nuclear recoil effect on the atomic g factor
The quantum electrodynamic theory of the nuclear recoil effect on the atomic
g factor to all orders in \alpha Z and to first order in m/M is formulated. The
complete \alpha Z-dependence formula for the recoil correction to the
bound-electron g factor in a hydrogenlike atom is derived. This formula is used
to calculate the recoil correction to the bound-electron g factor in the order
(\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page
Intervention effects and long-term changes in physical activity and cardiometabolic outcomes among children at risk of noncommunicable diseases in South Africa: a cluster-randomized controlled trial and follow-up analysis
INTRODUCTION: Risk factors for noncommunicable diseases such as insufficient physical activity (PA), overweight or hypertension are becoming increasingly predominant among children globally. While school-based interventions are promising preventive strategies, evidence of their long-term effectiveness, especially among vulnerable populations, is scarce. We aim to assess the short-term effects of the physical and health KaziKidz intervention on cardiometabolic risk factors and the long-term, pre-and post-COVID-19 pandemic changes thereof in high-risk children from marginalized communities. METHODS: The intervention was tested in a cluster-randomized controlled trial between January and October 2019 in eight primary schools near Gqeberha, South Africa. Children with overweight, elevated blood pressure, pre-diabetes, and/or borderline dyslipidemia were identified and re-assessed 2 years post-intervention. Study outcomes included accelerometry-measured PA (MVPA), body mass index (BMI), mean arterial pressure (MAP), glucose (HbA1c), and lipid levels (TC to HDL ratio). We conducted mixed regression analyses to assess intervention effects by cardiometabolic risk profile, and Wilcoxon signed-rank tests to evaluate longitudinal changes in the high-risk subpopulation. RESULTS: We found a significant intervention effect on MVPA during school hours for physically inactive children, and among active as well as inactive girls. In contrast, the intervention lowered HbA1c and TC to HDL ratio only in children with glucose or lipid values within the norm, respectively. At follow-up, the intervention effects were not maintained in at-risk children, who showed a decline in MVPA, and an increase in BMI-for-age, MAP, HbA1c and TC to HDL ratio. CONCLUSION: We conclude that schools are key settings in which to promote PA and improve health; however, structural changes are necessary to ensure that effective interventions reach marginalized school populations and achieve sustainable impact
Mesoscopic Fano Effect in a Quantum Dot Embedded in an Aharonov-Bohm Ring
The Fano effect, which occurs through the quantum-mechanical cooperation
between resonance and interference, can be observed in electron transport
through a hybrid system of a quantum dot and an Aharonov-Bohm ring. While a
clear correlation appears between the height of the Coulomb peak and the real
asymmetric parameter for the corresponding Fano lineshape, we need to
introduce a complex to describe the variation of the lineshape by the
magnetic and electrostatic fields. The present analysis demonstrates that the
Fano effect with complex asymmetric parameters provides a good probe to detect
a quantum-mechanical phase of traversing electrons.Comment: REVTEX, 9 pages including 8 figure
Cluster Transformation Coefficients for Structure and Dynamics Calculations in n-Particle Systems: Atoms, Nuclei, and Quarks
The structure and dynamics of an n-particle system are described with coupled
nonlinear Heisenberg's commutator equations where the nonlinear terms are
generated by the two-body interaction that excites the reference vacuum via
particle-particle and particle-hole excitations. Nonperturbative solutions of
the system are obtained with the use of dynamic linearization approximation and
cluster transformation coefficients. The dynamic linearization approximation
converts the commutator chain into an eigenvalue problem. The cluster
coefficients factorize the matrix elements of the (n)-particles or
particle-hole systems in terms of the matrix elements of the (n-1)-systems
coupled to a particle-particle, particle-hole, and hole-hole boson. Group
properties of the particle-particle, particle-hole, and hole-hole permutation
groups simplify the calculation of these coefficients. The particle-particle
vacuum-excitations generate superconductive diagrams in the dynamics of
3-quarks systems. Applications of the model to fermionic and bosonic systems
are discussed.Comment: 13 pages, 5 figures, Wigner Proceedings for Conference Wigner
Centenial Pecs, July 8-12, 200
Controlled Dephasing of Electrons by Non-Gaussian Shot Noise
In a 'controlled dephasing' experiment [1-3], an interferometer loses its
coherence due to entanglement with a controlled quantum system ('which path'
detector). In experiments that were conducted thus far in mesoscopic systems
only partial dephasing was achieved. This was due to weak interactions between
many detector electrons and the interfering electron, resulting in a Gaussian
phase randomizing process [4-10]. Here, we report the opposite extreme: a
complete destruction of the interference via strong phase randomization only by
a few electrons in the detector. The realization was based on interfering edge
channels (in the integer quantum Hall effect regime, filling factor 2) in a
Mach-Zehnder electronic interferometer, with an inner edge channel serving as a
detector. Unexpectedly, the visibility quenched in a periodic lobe-type form as
the detector current increased; namely, it periodically decreased as the
detector current, and thus the detector's efficiency, increased. Moreover, the
visibility had a V-shape dependence on the partitioning of the detector
current, and not the expected dependence on the second moment of the shot
noise, T(1-T), with T the partitioning. We ascribe these unexpected features to
the strong detector-interferometer coupling, allowing only 1-3 electrons in the
detector to fully dephase the interfering electron. Consequently, in this work
we explored the non-Gaussian nature of noise [11], namely, the direct effect of
the shot noise full counting statistics [12-15].Comment: 14 pages, 4 figure
- …