3,437 research outputs found

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Practical Implementations of Twirl Operations

    Full text link
    Twirl operations, which convert impure singlet states into Werner states, play an important role in many schemes for entanglement purification. In this paper we describe strategies for implementing twirl operations, with an emphasis on methods suitable for ensemble quantum information processors such as nuclear magnetic resonance (NMR) quantum computers. We implement our twirl operation on a general two-spin mixed state using liquid state NMR techniques, demonstrating that we can obtain the singlet Werner state with high fidelity.Comment: 6 pages RevTex4 including 2 figures (fig 1 low quality to save space

    Superconductivity and magnetism in RbxFe2-ySe2: Impact of thermal treatment on mesoscopic phase separation

    Full text link
    An extended study of the superconducting and normal-state properties of various as-grown and post-annealed RbxFe2-ySe2 single crystals is presented. Magnetization experiments evidence that annealing of RbxFe2-ySe2 at 413 K, well below the onset of phase separation Tp=489 K, neither changes the magnetic nor the superconducting properties of the crystals. In addition, annealing at 563 K, well above Tp, suppresses the superconducting transition temperature Tc and leads to an increase of the antiferromagnetic susceptibility accompanied by the creation of ferromagnetic impurity phases, which are developing with annealing time. However, annealing at T=488K=Tp increases Tc up to 33.3 K, sharpens the superconducting transition, increases the lower critical field, and strengthens the screening efficiency of the applied magnetic field. Resistivity measurements of the as-grown and optimally annealed samples reveal an increase of the upper critical field along both crystallographic directions as well as its anisotropy. Muon spin rotation and scanning transmission electron microscopy experiments suggest the coexistence of two phases below Tp: a magnetic majority phase of Rb2Fe4Se5 and a non-magnetic minority phase of Rb0.5Fe2Se2. Both microscopic techniques indicate that annealing the specimens just at Tp does not affect the volume fraction of the two phases, although the magnetic field distribution in the samples changes substantially. This suggests that the microstructure of the sample, caused by mesoscopic phase separation, is modified by annealing just at Tp, leading to an improvement of the superconducting properties of RbxFe2-ySe2 and an enhancement of Tc.Comment: 13 pages, 12 figure

    Low-temperature magnetic fluctuations in the Kondo insulator SmB6

    Full text link
    We present the results of a systematic investigation of the magnetic properties of the three-dimensional Kondo topological insulator SmB6 using magnetization and muon-spin relaxation/rotation (muSR) measurements. The muSR measurements exhibit magnetic field fluctuations in SmB6 below 15 K due to electronic moments present in the system. However, no evidence for magnetic ordering is found down to 19 mK. The observed magnetism in SmB6 is homogeneous in nature throughout the full volume of the sample. Bulk magnetization measurements on the same sample show consistent behavior. The agreement between muSR, magnetization, and NMR results strongly indicate the appearance of intrinsic bulk magnetic in-gap states associated with fluctuating magnetic fields in SmB6 at low temperature.Comment: 5 pages, 5 figure

    1/T_1 nuclear relaxation time of \kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl : effects of magnetic frustration

    Full text link
    We study the role played by the magnetic frustration in the antiferromagnetic phase of the organic salt \kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl. Using the spatially anisotropic triangular Heisenberg model we analyze previous and new performed NMR experiments. We compute the 1/T_1 relaxation time by means of the modified spin wave theory. The strong suppression of the nuclear relaxation time observed experimentally under varying pressure and magnetic field is qualitatively well reproduced by the model. Our results suggest the existence of a close relation between the effects of pressure and magnetic frustration.Comment: 10 pages, 9 figures, to appear in Journal of Phys.: Condens Matte

    Caracterização Espectroscópica da Matéria Orgânica do Solo.

    Get PDF
    bitstream/CNPDIA/10450/1/CiT24_2004.pd

    Dynamical heterogeneities in a supercooled Lennard-Jones liquid

    Full text link
    We present the results of a large scale molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify ``mobile'' particles. We find that these particles form clusters whose size grows with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the bulk, and that this difference increases with decreasing temperature.Comment: 8 pages of RevTex, 4 ps figure

    Adaptive structure tensors and their applications

    Get PDF
    The structure tensor, also known as second moment matrix or Förstner interest operator, is a very popular tool in image processing. Its purpose is the estimation of orientation and the local analysis of structure in general. It is based on the integration of data from a local neighborhood. Normally, this neighborhood is defined by a Gaussian window function and the structure tensor is computed by the weighted sum within this window. Some recently proposed methods, however, adapt the computation of the structure tensor to the image data. There are several ways how to do that. This article wants to give an overview of the different approaches, whereas the focus lies on the methods based on robust statistics and nonlinear diffusion. Furthermore, the dataadaptive structure tensors are evaluated in some applications. Here the main focus lies on optic flow estimation, but also texture analysis and corner detection are considered

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st
    • …
    corecore