216 research outputs found

    Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts

    Get PDF
    Activity in the primary visual cortex reduces when certain stimuli can be perceptually organized as a unified Gestalt. This reduction could offer important insights into the nature of feedback computations within the human visual system; however, the properties of this response reduction have not yet been investigated in detail. Here we replicate this reduced V1 response, but find that the modulation in V1 (and V2) to the perceived organization of the input is not specific to the retinotopic location at which the sensory input from that stimulus is represented. Instead, we find a response modulation that is equally evident across the primary visual cortex. Thus in contradiction to some models of hierarchical predictive coding, the perception of an organized Gestalt causes a broad feedback effect that does not act specifically on the part of the retinotopic map representing the sensory input

    Temporal stability of stimulus representation increases along rodent visual cortical hierarchies

    Get PDF
    Cortical representations of brief, static stimuli become more invariant to identity-preserving transformations along the ventral stream. Likewise, increased invariance along the visual hierarchy should imply greater temporal persistence of temporally structured dynamic stimuli, possibly complemented by temporal broadening of neuronal receptive fields. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analog of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations grew gradually along the hierarchy. A database of recordings from mouse showed similar trends, additionally revealing dependencies on the behavioral state. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing

    A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex

    Get PDF
    Visual input from the left and right visual fields is processed predominantly in the contralateral hemisphere. Here we investigated whether this preference for contralateral over ipsilateral stimuli is also found in high-level visual areas that are important for the recognition of objects and faces. Human subjects were scanned with functional magnetic resonance imaging (fMRI) while they viewed and attended faces, objects, scenes, and scrambled images in the left or right visual field. With our stimulation protocol, primary visual cortex responded only to contralateral stimuli. The contralateral preference was smaller in object- and face-selective regions, and it was smallest in the fusiform gyrus. Nevertheless, each region showed a significant preference for contralateral stimuli. These results indicate that sensitivity to stimulus position is present even in high-level ventral visual cortex

    Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis

    Get PDF
    Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies

    III/V-on-lithium niobate amplifiers and lasers

    Get PDF
    We demonstrate electrically pumped, heterogeneously integrated lasers on thin-film lithium niobate, featuring electro-optic wavelength tunability. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Knowing with Which Eye We See: Utrocular Discrimination and Eye-Specific Signals in Human Visual Cortex

    Get PDF
    Neurophysiological and behavioral reports converge to suggest that monocular neurons in the primary visual cortex are biased toward low spatial frequencies, while binocular neurons favor high spatial frequencies. Here we tested this hypothesis with functional magnetic resonance imaging (fMRI). Human participants viewed flickering gratings at one of two spatial frequencies presented to either the left or the right eye, and judged which of the two eyes was being stimulated (utrocular discrimination). Using multivoxel pattern analysis we found that local spatial patterns of signals in primary visual cortex (V1) allowed successful decoding of the eye-of-origin. Decoding was above chance for low but not high spatial frequencies, confirming the presence of a bias reported by animal studies in human visual cortex. Behaviorally, we found that reliable judgment of the eye-of-origin did not depend on spatial frequency. We further analyzed the mean response in visual cortex to our stimuli and revealed a weak difference between left and right eye stimulation. Our results are thus consistent with the interpretation that participants use overall levels of neural activity in visual cortex, perhaps arising due to local luminance differences, to judge the eye-of-origin. Taken together, we show that it is possible to decode eye-specific voxel pattern information in visual cortex but, at least in healthy participants with normal binocular vision, these patterns are unrelated to awareness of which eye is being stimulated

    The `Parahippocampal Place Area' Responds Selectively to High Spatial Frequencies

    Get PDF
    Defining the exact mechanisms by which the brain processes visual objects and scenes remains an unresolved challenge. Valuable clues to this process have emerged from the demonstration that clusters of neurons (“modules”) in inferior temporal cortex apparently respond selectively to specific categories of visual stimuli, such as places/scenes. However, the higher-order “category-selective” response could also reflect specific lower-level spatial factors. Here we tested this idea in multiple functional MRI experiments, in humans and macaque monkeys, by systematically manipulating the spatial content of geometrical shapes and natural images. These tests revealed that visual spatial discontinuities (as reflected by an increased response to high spatial frequencies) selectively activate a well-known place-selective region of visual cortex (the “parahippocampal place area”) in humans. In macaques, we demonstrate a homologous cortical area, and show that it also responds selectively to higher spatial frequencies. The parahippocampal place area may use such information for detecting object borders and scene details during spatial perception and navigation.National Institutes of Health (U.S.) (NIH Grant R01 MH6752)National Institutes of Health (U.S.) (grant R01 EY017081)Athinoula A. Martinos Center for Biomedical ImagingNational Center for Research Resources (U.S.)Mind Research Institut

    Culture Shapes Efficiency of Facial Age Judgments

    Get PDF
    Background: Cultural differences in socialization can lead to characteristic differences in how we perceive the world. Consistent with this influence of differential experience, our perception of faces (e.g., preference, recognition ability) is shaped by our previous experience with different groups of individuals. Methodology/Principal Findings: Here, we examined whether cultural differences in social practices influence our perception of faces. Japanese, Chinese, and Asian-Canadian young adults made relative age judgments (i.e., which of these two faces is older?) for East Asian faces. Cross-cultural differences in the emphasis on respect for older individuals was reflected in participants ’ latency in facial age judgments for middle-age adult faces—with the Japanese young adults performing the fastest, followed by the Chinese, then the Asian-Canadians. In addition, consistent with the differential behavioural and linguistic markers used in the Japanese culture when interacting with individuals younger than oneself, only the Japanese young adults showed an advantage in judging the relative age of children’s faces. Conclusions/Significance: Our results show that different sociocultural practices shape our efficiency in processing facia

    The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    Get PDF
    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli
    corecore