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Activity in the primary visual cortex reduces when certain stimuli can be perceptually organized as a unified Gestalt. This
reduction could offer important insights into the nature of feedback computations within the human visual system; however,
the properties of this response reduction have not yet been investigated in detail. Here we replicate this reduced V1
response, but find that the modulation in V1 (and V2) to the perceived organization of the input is not specific to the
retinotopic location at which the sensory input from that stimulus is represented. Instead, we find a response modulation that
is equally evident across the primary visual cortex. Thus in contradiction to some models of hierarchical predictive coding,
the perception of an organized Gestalt causes a broad feedback effect that does not act specifically on the part of the
retinotopic map representing the sensory input.
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Introduction

There are powerful and explicitly implementable
models of the manner in which feedforward transfor-
mations along the ventral visual pathway could convert
information from simple local feature detectors into
progressively more complex, global and useful interpre-
tations (e.g., Riesenhuber & Poggio, 1999). However, it
is currently unclear how feedback processes within the
visual hierarchy should be modeled or understood
(Muckli, 2010). This lack of understanding regarding
the role of feedback comes despite their potential
importance. Feedback connections are not just anatom-
ically abundant but also have a distinct pattern of
connectivity and wiring that is clearly not a simple
mirror reversal of the pattern of feed-forward connec-
tions (Sillito, Cudeiro & Jones, 2006). Furthermore,
there is increasing evidence that early visual areas are
affected by computations that are thought to be
computed at later stages of the system (e.g., Alink,
Schwiedrzik, Kohler, Singer, & Muckli, 2010; Fang,

Kersten, & Murray, 2008; Gilbert & Sigman, 2007;
Kosslyn et al., 1999; Murray, Boyaci, & Kersten, 2006;
Murray, Kersten, Olshausen, Schrater, & Woods, 2002;
Roelfsema, Lamme, & Spekreijse, 1998; Sterzer, Haynes,
& Rees, 2006; Williams et al., 2008). In addition, there is
evidence that the feedback of neural activation from
higher to lower visual areas has a direct impact upon on
the contents of conscious awareness (Pascual-Leone &
Walsh, 2001) consistent with certain theoretical propos-
als that feedback loops are critically required for
conscious perception (Lamme, 2006).

Our understanding of feedback is undoubtedly
hindered by the lack of precision with which its effects
can be singled out. For example, while directly
recorded neural differences in V1 responses in the first
peak response following the physical presentation of a
stimulus can probably be assumed to reflect the
feedforward input from the retina via the lateral
geniculate nucleus (LGN), the interpretation of neural
activation after this peak response is much more
ambiguous. The inability to single out the consequences
of feedback is even more evident when studied via the

Journal of Vision (2012) 12(11):12, 1–14 1http://www.journalofvision.org/content/12/11/12

doi: 10 .1167 /12 .11 .12 ISSN 1534-7362 � 2012 ARVOReceived March 6, 2012; published October 22, 2012

https://perswww.kuleuven.be/lee_de-wit/
https://perswww.kuleuven.be/lee_de-wit/
mailto:lee.dewit@ppw.kuleuven.be
mailto:lee.dewit@ppw.kuleuven.be
http://klab.lt
http://klab.lt
mailto:jonas.kubilius@ppw.kuleuven.be
mailto:jonas.kubilius@ppw.kuleuven.be
http://www.gestaltrevision.be
http://www.gestaltrevision.be
mailto:Johan.Wagemans@ppw.kuleuven.be
mailto:Johan.Wagemans@ppw.kuleuven.be
http://ppw.kuleuven.be/lbp/lbpMembers/u0029058
http://ppw.kuleuven.be/lbp/lbpMembers/u0029058
mailto:Hans.OpDeBeeck@ppw.kuleuven.be
mailto:Hans.OpDeBeeck@ppw.kuleuven.be


blunt time course of functional magnetic resonance
imaging (fMRI). Numerous studies have attempted to
circumvent these limitations by investigating the
modulation of early visual processing elicited via
perceptual interpretations that could not plausibly be
computed at early stages of processing. Murray and
colleagues provide an elegant example of this in their
investigation of the primary visual systems response to
a bistable stimulus (Fang et al., 2008; Murray, Kersten,
Olshausen, Schrater, & Woods, 2002, Experiment 3).
The bistable stimulus they used consists of four bars
that are arranged in such a way that they can be
interpreted as one whole (diamond) shape moving
behind a set of modally completed occluders, or simply
as four separate lines (Lorenceau & Shiffrar, 1992).
With the right size, luminance and motion parameters
these two ‘local’ and ‘global’ interpretations of the
same stimulus can be rendered equally plausible such
that neither interpretation is stable, and one’s percep-
tion switches from one interpretation to the other (see
Figure 1). The use of these perceptual switches in
deriving conclusions about feedback relies on the
assumption that grouping of distinct elements into a
unified Gestalt is performed in stages higher in the
visual system than V1, where one finds larger receptive
fields and more complex response properties. Given the
profound disruption to the perception of even very
basic perceptual groupings or Gestalts in patients with
preserved primary visual function and higher ventral
stream lesions (de-Wit, Kentridge, & Milner, 2009;

Goodale et al., 1995; James, Culham, Humphrey,
Milner, & Goodale, 2003), this assumption will be
assumed to be valid in this article.

Despite the evidence that the perceptual integration
of sensory input into an organized Gestalt has to be
computed at stages higher than V1, Murray and
colleagues found a striking reduction in primary visual
activity when participants switched from a local
(individual lines) to a global (whole shape) interpreta-
tion of this stimulus. It should be noted that this effect
may be somewhat specific to the parameters and
procedure used in this study (see Caclin et al., 2012,
and our Discussion). Nevertheless, if the perception of
a Gestalt sometimes reduces the BOLD signal in V1,
one can question what this reduction reveals about the
computational role of feedback. The reduction in V1
activation is consistent with a ‘hierarchical predictive
coding’ framework in which activations in lower visual
areas partly reflect the representation of ‘error’ (or
unexplained input) that can be ‘explained away’ via the
feedback of predictions from higher to lower areas of
the system (Friston, 2009; Rao & Ballard, 1999).
Indeed, the result by Murray and colleagues is
potentially related to other demonstrations of reduc-
tions in activation levels at earlier stages of processing
when presented with predictable stimulus dynamics
(Alink, Schwiedrzik, Kohler, Singer, & Muckli, 2010)
or predictable stimulus contingencies (den Ouden,
Daunizeay, Roiser, Friston, & Stephane, 2010). In this
case the predictability comes from the assumption that

Figure 1. The stimuli from left to right illustrate the full motion profile of the Diamond Figure. The dashed lines in the bottom three Figures

are used to highlight the perceptual interpretation of the amodally completed Diamond shape.
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integrating sensory input into an organized Gestalt
increases the predictability of that input and hence
reduces the error represented at early stages of
processing, which leads to an overall reduction in early
activity.

The idea that the brain actively seeks to predict
upcoming sensory input can be seen as consistent with
a long tradition that regards perception as a ‘hypoth-
esis-generating’ process (Gregory, 1997; Helmholtz,
1925). Predictive coding (Rao & Ballard, 1999),
however, is not simply a computational level (Marr,
1982) explanation of what the brain is trying to achieve,
but rather an algorithmic level theory about the way in
which the different levels in the visual hierarchy interact
to achieve this goal. We have, therefore, adopted the
term ‘hierarchical predictive coding’ in order to clarify
that we are talking about the way in which perception
can be regarded as a process of making predictions
specifically through feedback in a hierarchical system.
More specifically, in this framework, feedback conveys
predictions that seek to explain away potential error
evoked by unexplained sensory input.

This hierarchical predictive coding model of feed-
back stands in contrast with another proposed role of
feedback, that does not seek to reduce error, but simply
to enhance sensory input that is consistent with
interpretations or hypotheses that are generated at a
higher level of processing (Murray, Schrater, &
Kersten, 2004). Indeed, given the inherent ambiguity
of sensory input, feedforward processing might lead to
the generation of potential hypotheses regarding the
gist of a scene and the objects that are contained in it,
which generate feedback signals that simply enhance
sensory input consistent with these hypotheses (Bar et
al., 2006). In this framework, the visual system would
rather use predictions to form a kind of positive
feedback loop. A positive feedback loop would
intuitively lead one to predict an increased response
to predictable stimulus properties. However, it is
possible that positive feedback could lead to an overall
decrease in fMRI activation via an increase in the
efficiency of lower level representations by suppressing
noise, and thus representing the same information with
less overall activity (see Kok, Jehee, & de Lange, 2012).
Critical to the current study, both hierarchical predic-
tive coding and efficient coding explanations assume
that any reduction would be specific to the sensory or
bottom-up representation of that input.

To summarize, given the clear anatomical potential
for feedback and the lack of consensus about the role of
feedback, we decided to explore in more detail the
reduction in primary visual activation associated with a
bistable shape configuration. More specifically, we set
out to test the assumption (common to both predictive
coding and efficiency explanations of feedback) that the
effect should be specific to the retinotopic location at

which the stimulus was presented. Indeed this assump-
tion was made explicit in Fang et al. (2008), who stated
that ‘‘we are confident that the modulations in the fMRI
signal that we observed occurred in the retinotopic
representation of the stimulus and not in immediately
adjacent retinotopic regions’’ (p. 6). In contrast, when
we investigated this directly it became evident that,
although there was a clear reduction in activation at the
retinotopic location of the stimuli, this reduction did
not appear to be specific to, or even selectively stronger
in, the retinotopic location of the stimulus. As will be
discussed further, this result is consistent with other
demonstrations that feedback effects are observable at
retinotopic locations other than those where the stimuli
are classically represented (Ester, Serences, & Awh,
2009; Williams et al., 2008), but would not have been
directly expected if the effect of feedback on V1 would
be to explain away error signals or enhance early
sensory representations.

Methods

Participants

Fifteen participants completed a pilot behavioral
experiment to assess the average duration of stable
perceptual periods while observing the bistable dia-
mond stimulus. None of these participants had
experience with this stimulus prior to testing in this
experiment. On the basis of this pilot, two participants
were excluded from completing the fMRI experiment,
because the average duration of their stable percepts
was less than 4 seconds. Functional and high-resolution
anatomical MRI images were therefore obtained from
13 participants (ages: 21–37). For the first fMRI
participant we did not include a baseline measure of
fixation activation to which the data analysis for all
other participants is normalized, therefore this partic-
ipant’s data is not included in the results described
below. All participants reported normal or corrected-
to-normal vision. Participants were provided with
financial compensation and written informed consent
was obtained. The study was approved by the ethical
committee of the Faculty of Psychology and Educa-
tional Sciences and the committee for medical ethics at
the University of Leuven.

Stimuli and procedure

All 13 participants completed three types of fMRI
runs: Diamond, Stimulus-Specific-Checkerboard, and
Large-Square-Wave-Grating, which will be described
below. Moreover, all the participants also completed
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Meridian-Mapping and Object-Versus-Scrambled-Ob-
ject runs and a T1 weighted structural run (these data
were available from a previous experiment for six
participants, see Kubilius et al., 2011).

In the Diamond runs participants were presented
with 16 seconds of fixation at the start of the run
followed by 403 seconds of the bistable moving
diamond / lines stimulus followed by a further 13
seconds of fixation. Participants had to fixate on a
small central dot during the entire run. The Diamond
stimulus consisted of four oriented lines that moved
such that they could be interpreted either as four lines
moving separately (local condition) or as one solid
(‘diamond’) shape moving horizontally behind three
invisible occluding bars (global condition; Figure 1).
The visible line segments were 2.68 in length and 0.458
in width, they moved horizontally at 1.38/s and switch
direction every second. When symmetric around
fixation the center of each line was at located at 2.88
eccentricity. While viewing the stimulus, participants
used two buttons to indicate whether they perceived
the stimulus as separate lines or as one shape.
Participants were only required to press one of the
buttons when their percept switched from one inter-
pretation to another. However, they were also allowed
to press again at any point if they had, for example,
lost track and wanted to make sure that the correct
percept was registered. Repeat presses that did not
involve a switch in percept were then ignored.
Participants completed either four or five repetitions
of this Diamond run.

The Meridian-Mapping runs adopted a standard
procedure from Tootell et al. (1995) in which horizon-
tal and vertical checker board wedges (of 158) were
presented to define the boundaries between primary
visual areas (as used in Kubilius et al., 2011). Each run
contained 8 seconds of fixation at the start and end
with 10 blocks of vertical or horizontal wedges,
presented for 16 seconds, in a counterbalanced order
across runs. During their presentation, three parame-
ters of the vertical or horizontal wedges changed: (a)
the number and size of squares across the width of the
wedge (from 20 to 40 cycles), (b) the number and size of
squares across the length of the wedge (between 4 and
18 cycles), and (c) the color (see Figure 2).

In the Stimulus-Specific-Checkerboard runs partici-
pants were presented with 16 second blocks with
different pairs of stationary flickering checkerboard in
which the phase randomly shifted every 100 ms. There
were three conditions (Figure 2b): a fixation condition,
where only a fixation dot was present, pairs of
checkerboards corresponding to the upper left and
lower right lines of the Diamond stimulus, and pairs of
checkerboard corresponding to the lower left and upper
right lines of the Diamond stimulus. Because the
Diamond stimulus was moving, the checkerboards

covered the entire region where the lines of the
Diamond appeared. Participants had to fixate on a
small central dot throughout the run. Blocks of
conditions were presented in a counterbalanced order
(Fix-A-B-A-B-Fix-B-A-B-A-. . .) and alternate runs
would begin either A-B or B-A. These runs were 400
seconds long.

Participants were also presented with six Back-
ground ROI (Large-Square-Wave-Grating) runs of
160 seconds. These runs started and ended with 16
seconds of fixation and alternated between left and
right oriented square wave gratings with an 8.58 radius
but with a 1.78 gap around fixation. The wedges of this
grating were 0.458 in width. The phase of the grating
changed randomly every 100 ms (Figure 2).

The Object-Versus-Scrambled-Object runs adopted a
standard Lateral occipital complex (LOC) localizing
procedure (Grill-Spector et al., 1998; as used in
Kubilius et al., 2011). There were two conditions:
intact objects and scrambled objects. The set of 20
intact objects was retrieved from http://www.
imageafter.com and http://www.morguefile.com and
consisted of images of human-made objects, foods,
and plants. All images were full color and 256 · 256
pixels in size. Each image featured a prominent object
presented on a simple background that was not
uniform to ensure that images of both intact objects
and scrambled objects subtended the same area. The set
of 20 scrambled objects was created from the 20 images
of intact objects by dividing each image into 256 tiles
(16 · 16 pixels) and shuffling them randomly within the
image. Intact and scrambled images were presented at
four locations around fixation and participants per-
formed an ‘odd one out’ detection task. Stimuli were
presented approximately 78 away from a central
fixation dot and subtended 58 of visual angle. Each
trial consisted of a 300-ms stimulus presentation (with a
fixation dot present) followed by a 500-ms interstimu-
lus interval with only a fixation dot. There were eight
blocks of 20 intact images each, eight blocks of 20
scrambled images each, and five fixation blocks. Blocks
were counterbalanced and lasted for 16 seconds each.
Participants were asked to press a key when they
spotted an immediately repeated image (a one-back
task). Images were repeated between two and four
times per block.

Scanning parameters

The experiment was carried out using a 3T Phillips
Intera scanner (Phillips, Best, The Netherlands) with an
eight-channel SENSE head coil with an echo-planar
imaging sequence. We recorded from 18 slices during
the Diamond, Stimulus-Specific-Checkerboard and
Large-Square-Wave-Grating runs oriented downwards
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for a full occipital and inferotemporal cortex coverage
with a voxel size 2.75 · 2.75 · 2.75 mm and interslice
distance of 0.2 mm (acquisition matrix 80 · 80). The
Diamond, Checkerboard and Large Square Wave
Grating Runs consisted of 432, 400 and 160 measure-
ments respectively with a TR of 1000 ms, flip angle 608,
and an echo time of 30 ms. This short TR was used to
maximize the timing precision of participants percep-
tual state when viewing the Diamond stimulus (which
switched on average every 8 seconds). The Meridian-
Mapping and Object-Versus-Scrambled-Object scans
were acquired with 37 slices and consisted of 168
measurements with a TR of 2000 ms, flip angle 908, and
an echo time of 30 ms.

The T1-weighted anatomical scan had .85 · .98 mm
in plane resolution and 1.37 mm between the slices

(acquisition matrix 256 · 256), 9.6 ms TR, 4.6 ms TE,
182 coronal slices, and lasted for 383 s.

fMRI analysis

The data were preprocessed using the Statistical
Parametric Map package (Version 8; Wellcome Trust
Centre for Neuroimaging, London, England). A
standard preprocessing procedure was followed to
align, coregister, normalize and smooth the data.
Regions of interest were identified on the basis of
smoothed data (with a 5.5 mm full-width-half-maxi-
mum Gaussian kernel). The unsmoothed, normalized
data from the Diamond runs were extracted directly
from each run after a linear and quadratic trend
correction. The ‘local’ and ‘global’ event-related time

Figure 2. Illustrating the stimuli used to select the regions of interest. The first row shows the two retinotopic mapping meridians, and the

way in which the contrast is used to define the boundaries between the primary visual areas (Tootell et al. 1995). The second row shows

the two Stimulus-Specific-Checker Board stimuli, and the resulting activation in the contrast between them (threshold at t¼ 3.7) , overlaid

on the retinotopic boundaries. The third row presents the Large Square Wave Grating, and the resulting activation in the contrast to

fixation (t ¼ 3.7).
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courses were calculated on the basis of the button
presses of the participant. TRs that contained a switch
were assigned to the ‘new’ percept only when the
change occurred in the first half (500 ms) of that TR,
otherwise the new percept was taken to start from the
start of the next TR. Resulting perceptual durations of
only 1 TR (around 3% of all percepts, see Figure 6),
were excluded from the final analysis. For each ‘event’
(nonrepeat button press) we extracted a time course of
which the length was equal in time to the duration of
the percept. As a result, the early time points in the
shown time courses are based upon more trials than the
later time points. All time courses from the diamond
runs are expressed in percent signal change versus
fixation.

Identifying regions of interest

Regions of interest (ROIs) were defined in CARET 5
(Van Essen et al., 2001) on a flat surface of the brain
(Figure 2, right column). First, V1-V2, V2-V3, and V3-
higher regions’ borders were defined using a contrast
horizontal . vertical wedge from Meridian-Mapping
runs. Using this border information, Stimulus-Specific
ROIs for the Diamond in V1, V2, and V3 were selected
based on activation (min threshold, tj ¼ 3.7, uncorrect-
ed p , 0.0001) elicited in the contrast between the two
checker board locations. ROIs were identified in the left
and right hemisphere and dorsally and ventrally from
the calcarine sulcus corresponding to the retinotopic
locations of the four lines composing the Diamond,
leading to four retinotopic ROIs for each visual area
V1, V2, and V3.

A larger Background ROI was selected on the basis
of the activation elicited by the Large-Square-Wave-
Grating runs (with a threshold of t¼ 3.7 in contrast to
fixation). Any voxels in this Background ROI that
were also present in the Stimulus-Specific ROI were
removed. In this way one could ensure that none of
the voxels in the Background ROI were taken from
areas of retinotopic cortex in which the lines of the
Diamond stimulus were presented. In order to be
absolutely certain that there was no ‘spillover’ of
signal from the Stimulus-Specific ROI to the Back-
ground, a more Conservative Background was also
constructed by artificially inflating the size of the
Stimulus-Specific ROI by one voxel in all three
dimensions around the border of this ROI, and then
subtracting this enlarged Stimulus-Specific ROI from
the Background ROI to give a more Conservative
Background.

However, because the stimulus-specific ROI was
already relatively large the resulting Background ROI
was sometimes very small (Figure 2 displays a subject
for which this problem was not present). This was

especially true for the higher areas (V2/V3), which is
not surprising given the increase in receptive field size.
If, after removing voxels also present in the Stimulus-
Specific ROI, the resulting Background ROI was both
half the size of the mean ROI size for that area across
participants and was below one standard deviation of
the mean for that visual area, then the ROIs for that
visual area for that participant were excluded. This
procedure resulted in the exclusion of one participant
for V1, two participants for V2 and three participants
for V3. This procedure excluded one participant’s data
in all three areas, so this participant’s data was also
removed from the lateral occipital complex (LOC)
analysis (although the same result for LOC was found
when this participant’s data was included).

For the shape-selective lateral occipital (LO) and
posterior fusiform (pFs) cortex, we used the objects .
scrambled objects contrast (Grill-Spector et al., 1998).
LO was defined as a lateral shape-selective region, while
posterior Fusiform sulcus (pFs) was defined on the
basis of shape-selective activation on the ventral
surface. These two ROIs were also analyzed together
as the LOC.

Results

We aimed to replicate the effect of the perceptual
interpretation of the bistable stimulus in the Stimulus-
Specific ROI in V1, and then to investigate to what
extent this same effect occurs in the Background ROIs.
To this end the fMRI signal while observing this
stimulus was computed as a function of the partici-
pant’s perceptual switches (recorded via a button
press). The change in BOLD signal, just before and
after a button, is illustrated in Figure 3. The change is
illustrated for the Stimulus-Specific, Background and
the Conservative-Background ROIs in V1, V2, and V3.
The solid line (reflecting a switch to the global stimulus
interpretation) clearly goes down after a switch in V1
and V2, whereas the dashed line (reflecting a switch to
the local interpretation of the bistable stimulus) shows
an increase in activity after a switch.

In order to test for the sensitivity to the change in
percept in each area a three-factor repeated-measures
ANOVA (with 16 Time points, two Grouping levels:
Local vs. Global, and three ROIs: Specific vs. Non-
Specific) was used. First focusing on V1, there was an
interaction between Time and Grouping, F(15, 150) ¼
4.21, p , 0.011, replicating the previous finding that the
BOLD signal over time is influenced by the subjective
perception of the participant. The same three-factor
repeated-measures ANOVA also revealed an effect of
Grouping over Time, F(30, 270)¼ 3.6, p , 0.015, in V2
but not in V3, F(15, 120) ¼ 1.04, p ¼ 0.4.
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Surprisingly, however, none of these regions show a
difference (interaction) between the change in percept
over time and the distinct ROIs in each region, V1: F¼
0.99; V2: F(30, 270) ¼ 1.4, p ¼ 26; V3: F(30, 240) ¼
0.375, p ¼ 0.37. This suggests that the influence of the
perceptual interpretation of the stimulus in V1 and V2
is not restricted to the retinotopic location of the
stimulus. Although the interaction term in the three-
factor ANOVA is the appropriate means with which to
test for a differential sensitivity to the subjective
interpretation of the percept, we also completed
individual t tests (uncorrected for multiple compari-
sons) comparing the size of the difference between the
two perceptual interpretations for each ROI in V1 at
every time point. This post-hoc analysis did not reveal a
single time point at which the size of the effect was
larger in the Stimulus-Specific ROI. The only signif-
icant difference was for a stronger difference in the
Background ROI at time point 1, but this was only
marginal (p ¼ 0.046) and would not hold up when
correcting for multiple comparisons. The same paired t
tests in V2 and V3 also revealed no evidence of a
differential sensitivity to the strength of the perceptual
modulation of the BOLD signal.

Given the clear sensitivity to the grouping of the
percept in the Background ROIs, it was important to
confirm that the selection of Stimulus-Specific, Back-
ground and the Conservative-Background ROIs had
been defined correctly as distinct areas of the retino-
topic map. The reduced overall activation level relative
to fixation for the Background ROI is already a
potential indication that distinct ROIs had been
identified (significant in V1, F(2, 20) ¼ 26.7, p ,
0.001, and V2, F(2, 18)¼ 4.6, p¼ 0.042, but not in V3,
F(2, 16) ¼ 4, p ¼ 0.36, because this is consistent with
previous demonstrations of suppressed BOLD respons-
es in retinotopic areas adjacent to the presented stimuli
in V1) (Bressler, Spotswood, & Whitney, 2007).
However, in order to demonstrate more explicitly that
the ROIs were chosen correctly, we contrasted the first
16 seconds of spatially smoothed (with a 5.5 mm full-
width-half-maximum Gaussian kernel) BOLD signal
change following the onset of the Diamond stimulus in
each run with the preceding 16 seconds of fixation
(plotted in Figure 4).

This contrast enables us to test whether each ROI
responds to the sensory onset of the stimulus. In V1 this
contrast leads to a clear response to the Diamond onset

Figure 3. The change in BOLD signal is plotted relative to the participants button press (indicated by a vertical dashed line). For V1, V2,

and V3 the response is plotted for the Stimulus-Specific, Background and the Conservative-Background ROIs. The solid line plots a

switch from a local to a global stimulus interpretation, and the dashed line plots a switch from the global to the local. Significant differences

(p , 0.05, two tailed, uncorrected paired sample t test) between the responses to the local and global percepts in each ROI are illustrated

with a star.
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in the Stimulus-Specific ROI, t(10) ¼ 3.6, p ¼ 0.0048,
and no response to the onset of the Diamond per se in
the Background ROI (p ¼ 0.96) and if anything a
reverse trend in the more Conservative-Background
ROI, t(10) ¼ 1.9, p ¼ 0.089. For V2 we found a clear
stimulus onset response in the Specific ROI, t(9)¼2.4, p
¼ 0.039, and no response in the Background ROI (p ¼
0.57) or the more Conservative-Background (p¼ 0.83).
In V3, there was a response to the onset in the Sensory-
Specific ROI, t(8) 3.6, p¼ 0.0073, there was, however, a
response in the Background ROI, t(8) ¼ 2.6, p ¼ 0.03,
but not the more Conservative-Background ROI (p ¼
0.83). The fact that the difference between the specific
and Non-specific ROIs was clearer in V1/V2 than V3
might be related to smaller receptive field sizes in V1/V2
and a clearer retinotopic organization in V1/V2 in
general (Dumoulin & Wandell, 2008). The fact that the
Background ROI in V3 responds to the onset, but that
the more Conservative Background ROI does not,
offers, in itself, something of a sanity check for our
definitions of these ROIs, because the more Conserva-
tive Background should by definition be less susceptible
to spill over from the Sensory ROI. Critically, this
analysis clarifies that while the Background ROI shows
the same sensitivity to the perceptual interpretation of
the stimulus, it does not respond to the onset of the
stimulus per se in V1, V2, and the Conservative-
Background responds in neither V1, V2, nor V3.

Fang et al. (2008) extended Murray et al.’s (2002)
results by demonstrating that in addition to the clear
reduction of activation in V1, there was also a reversal
of this pattern in a region they labeled as LOC. We did
not find a clear increase in the whole of LOC (LO and
pFs, see Methods, F(15, 150) ¼ 1.23, p ¼ 0.236, but

upon discussing this discrepancy with the original
authors (F. Fang, personal communication, August
17, 2012) it appears plausible that the region they
labeled LOC in fact only contained what we have
defined as the more posterior shape selective region LO.
The increase in LO is not as large as that reported by
Fang et al. but it is still quite robust, F(15, 150)¼ 3.96,
p , 0.001). It is also likely that the more anterior shape
selective region on the ventral surface that we have
labeled pFs corresponds to what Fang et al. labeled
temporal object areas (TOA). Although there is a
similar pattern of results in pFs to that found in LO
(see Figure 5) these are not significant, F(15, 150) ¼
0.74, p ¼ 0.7, a pattern broadly consistent with the
results of Fang et al.

Looking just at the participants’ behavioral data, the
frequency of each perceptual interpretation for the
bistable figure reveals a slight difference in the
distributions for each perceptual interpretation (plotted
in Figure 6). In order to avoid any potential
confounding influence this might have, the analysis of
the fMRI data was also repeated using perceptual
durations from one perceptual interpretation only
when they could be matched with a duration of equal
length of the other interpretation. The resulting
distribution of ‘Equalized Frequencies’ is also plotted
in Figure 6. This procedure tended to reduce the
number of perceptual durations at the extreme of the
distribution; this is clearest in the absence of any
durations lasting only 1 second in the Equalized
Frequencies (although as noted in the Methods,
durations of only 1 second were also not included in
the main analysis reported above). The analysis of the
fMRI data set using only this set of balanced durations

Figure 4. Plotting the time course of activation at the start of each run. Each run begins with 16 seconds of fixation before the stimulus

appears, indicated by the dashed vertical line.

Journal of Vision (2012) 12(11):12, 1–14 de-Wit, Kubilius, Wagemans, & Op de Beeck 8



revealed the same findings as those reported above,
highlighting that the slight difference in the durations
of each percept do not account for the BOLD signal
differences between these interpretations.

Discussion

One of the biggest open questions in visual
neuroscience centers on the functional role of the
abundant feedback connections to early visual areas.
Most models of feedback assume that it acts especially
on the bottom-up sensory input. The hierarchical
predictive coding model in particular assumes that
feedback is directed to the sensory representation of
incoming input to provide a comparison between top
down predictions and bottom up signals. This model
has previously been motivated based on data showing
that organized (and thus predictable) percepts lead to
reduced activation levels on the primary visual cortex
(Fang et al., 2008; Murray et al., 2002). The results of
the current study replicate this reduction, but find that
this reduction is not specific to the sensory representa-
tion of this stimulus; rather, it also occurs in retinotopic
regions that do not respond to the sensory onset of the
stimulus. Importantly however this reduction is not
found in all visual areas (which might suggest a general
arousal effect); rather, our results also replicate an
increase in activation for the organized percept in the
higher-level shape selective region LO (Fang et al.,
2008).

The studies by Murray and colleagues (2002,
Experiment 3; Fang et al., 2008) upon which the
current investigation was based, were particularly
significant in guiding models of feedback dynamics
because they documented a modulation in primary

visual activation that clearly could not be explained by
changes in the bottom-up stimulus to the system. The
reduced activation in V1 following the perceptual
organization of the bistable input has been cited as
potential evidence that when sensory input can be
interpreted at a higher stage in the visual hierarchy, this
interpretation can be fed back as a prediction that leads
to a reduction in activation either by canceling out
already predicted input or by reducing the hypothesized
error induced by the representation of this input. Just
based on average fMRI data alone, however, reduc-
tions in signal do not provide conclusive evidence for
hierarchical predictive coding, rather this coarse
reduction in activation at the level of voxels could be
consistent with an efficient coding model in which
feedback sharpens the underlying representation and
inhibits noise (Kok et al., 2012; Murray et al., 2004).
The current results, however, are hard to reconcile with
either model of feedback effects, as both would predict
an effect that would be specific to the incoming sensory
stimulation that would be the target of such feedback.

This nonsensory specific reduction in V1 activation
appears more consistent with the notion of a flexible
reverse hierarchy (Hochstein & Ahissar, 2002) in which
the system flexibly allocates resources so as to
preferentially read out information from the most
appropriate level of the system for representing the
stimulus. Indeed this interpretation is consistent with
behavioral data, both for this diamond illusion (He,
Kersten, & Fang, 2012) and for other stimuli (Poljac,
de-Wit, & Wagemans, 2012; Sayim, Westheimer, &
Herzog, 2012) that the extent to which visual input can
be grouped into a higher level Gestalt leads to a
reduction in the lower level sensory representation of
the ‘parts’ of that Gestalt.

This idea that the visual system might preferentially
allocate processing resources to the most appropriate

Figure 5. The change in BOLD signal is plotted relative to the participants button press separately for LO and pFs, and in the combined

region ‘LOC.’ The stars indicate significant differences between the local and global percepts using an uncorrected paired samples t test.
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stage of processing for representing this stimulus could
be regarded as a form of attentional selection to
different stages in the visual hierarchy. Attention is,
however, a potentially problematic term that can be
used in the context of any modulation in activation
levels without necessarily providing any insight into the
underlying mechanism. It is therefore pertinent to note
that the change in BOLD signal reported here is
different from classical observations of selective spatial
attention in two important ways. First attention to a
given stimulus appears to be generally as spatially
specific as the retinotopic representation of that
stimulus (Brefczynski & DeYoe, 1999; Saygin &
Sereno, 2008; Tootell et al., 1998). Indeed, attending
to a stimulus is an established means of improving the
procedure for defining retinotopic maps (Bressler &
Silver, 2010), which could obviously not be the case if
the change in activation was as homogeneous as that
observed in the current work. The second distinction is
that attentional effects are typically found to be larger
at higher stages of processing (Moran & Desimone,
1985; Saygin & Sereno, 2008; Tootell et al., 1998), in
contrast to the progressive reduction in the size of the
modulation seen here (and in Fang et al., 2008; Murray
et al., 2002) such that there was a reduced effect in V2

and no effect in V3. Thus while the current results
could be described as a form of attentional selection to
a given stage in the processing hierarchy, it should be
clear the nature of this modulation is very different
from that observed in more classical explains of
selective spatial attention, and is unlikely to involve a
common mechanism.

The idea that the nonstimulus specific reduction in
BOLD signal reflects some form of flexible resource
allocation to different levels of the visual hierarchy is,
however, just a speculative possibility for explaining
these data. The more solid conclusion to draw from
these results is that they reject the hypothesis drawn
from hierarchical models of predictive coding. This
result therefore provides an important challenge for an
increasingly popular approach for modeling cortical
dynamics in the hierarchy of the visual system (Friston,
2012; Kersten, Mamassian, & Yuille, 2004; Mumford,
1992; Rao & Ballard, 1999). Part of the appeal of the
predictive coding framework, however, is not just the
role it plays in the visual system, but how it serves as a
more general framework for thinking about how the
human mind works, or what it is trying to achieve
(Clark, 2012). Our results do not necessarily question
this broader notion that the brain attempts to predict

Figure 6. The top two graphs illustrate the frequency of the different perceptual durations for the two percepts; the graph below shows the

distribution resulting when only durations of equal length were selected from each condition. This analysis tended to reduce the number of

perceptual durations at the extremes of the distribution.
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upcoming sensory input, rather it challenges a specific
implementation of hierarchical predictive coding in
which specific predictions about sensory input are fed
back to earlier stages of processing. Even within the
domain of perception, there are other potential
implementations of predictive coding, for example
neurons at one level of the system may attempt to
predict the next stimulus to appear in a sequence over
time (Perrett, Xiao, Barraclough, Keysers, & Oram,
2008). Thus the current results do not speak to the idea
that the brain might be attempting to predict upcoming
input in general, rather they question one source of
evidence that these predictions are implemented via
stimulus specific feedback signals within the visual
hierarchy.

The demonstration of ‘nonsensory’ modulation of
V1 in the current study is at one level consistent with
numerous observations of feedback influencing V1,
either in the absence of sensory input (Ester, Serences,
& Awh, 2009; Harrison & Tong, 2009; Kosslyn et al.,
1999) or at retinotopic locations other than the actual
presentation of the stimulus (Williams et al., 2008).
What seems to set all of these observations apart from
the results here, however, is that these previous studies
all seem to involve some active use of the activity
elicited in V1, either in terms of imagining stimuli or
holding stimuli in working memory. Indeed Williams et
al. only found patterns of activation in nonstimulated
parts of the retinotopic map when participants had to
actively perform a demanding task with the shapes
presented more peripherally.

In the study of Ester, Serences, and Awh (2009) the
authors explore more carefully the nature of the more
widespread feedback effects to the primary visual
cortex, by testing whether stimuli presented to one
hemifield are also maintained in patterns of activation
in the other hemifield during a working memory task.
Such a manipulation could be informative with regards
to the current study in order to more fully understand
the nature of the feedback process at work. Future
work could also provide further insight into the nature
of this V1 suppression by looking at GABA concen-
trations, which are both important in inhibiting signals
(Sumner, Edden, Bompas, Evans, & Singh, 2010) and
appear to play an important role in other examples of
bistable perceptual interactions (van Loon et al., 2012).

Another open question in our understanding of the
modulation in V1 (and V2) regards its source. Fang et
al. argued that the opposite sensitivity of LO to this
bistable stimulus made LO a plausible source of this
feedback, consistent with this areas role in perceptual
organization more generally. The opposite signal
change in LO does not however prove that this region
is responsible for the modulation in V1. To test that
more causal methods (such as transcranial magnetic
stimulation [TMS]) would be needed to rule out a

potential role of other areas, such as areas important
for grouping moving stimuli (Shipp & Zeki, 1989;
Sterzer, Haynes, & Rees, 2006), or dorsal areas in the
parietal lobe that also represent simple shapes (Lehky
& Sereno, 2007; Xu & Chun, 2007), and indeed
complex objects (Konen & Kastner, 2008).

The role of visual areas involved in motion
processing is also highlighted in a recent study using
a variation of the same bistable Diamond stimulus
(Caclin et al., 2012), which was published after we had
carried out our study. Importantly this study fails to
find a decrease in primary visual activation when
switching to an organized (bound) stimulus, in fact they
find an increase in activation. As highlighted by Caclin
et al., however, there are a number of differences
between their study and that of Fang et al. (and
therefore our replication). First there are differences in
the stimulus used, not only in terms of its color but also
its motion path. In addition there are differences in the
procedure used, in that in the present study (and that of
Fang et al.) only spontaneous transitions in the
interpretation of the sensory input were presented,
whereas Caclin et al. also studied cases in which the
change in percept was induced by changes to the
stimulus. Although they did not find an effect of
induction type (spontaneous or induced) per se, it may
be that prior exposure to induced changes could change
the manner in which participants interpret the stimulus.
It is perhaps not surprising that our study replicates the
reduction found in Murray and colleagues’ previous
work, given that we explicitly set out to replicate the
parameters used in the study of Fang et al. Clearly,
future work will be required to pin down exactly what
conditions are required for cases of perceptual group-
ing to lead to reductions in primary visual activation.

In summary, this work tests a key assumption
regarding the retinotopic specificity of feedback to
V1. This retinotopic specificity was an important
assumption, not only in models of hierarchical predic-
tive coding, but also rival models that explained
reductions in activation as a fine tuning of information
via an enhancement of representations consistent with
top-down signals. The nonstimulus specific nature of
the effect reported here provides an important chal-
lenge to these models. The result is still consistent with
behavioral observations that the representation of
‘early’ stimulus features seem to be reduced when they
can be organized into a Gestalt, which could, in turn,
be indicative of some form of selective resource
allocation to different levels in the visual hierarchy.
The current results, however, do not enable us to fully
characterize the nature of the more global modulation
of V1. Furthermore while they do find an opposite
relationship to the perceptual grouping in LO, more
causal work would be needed to test the exact role of
this area. It is important to note that while these results
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call into question a particular implementation of
hierarchical predictive coding, they do not necessarily
undermine the more general idea that the brain could
be optimally understood as a predictive coding system.
Finally, future work will also be required to pin down
why certain stimulus parameters lead to reductions in
primary visual activation when perceptual input is
organized into a Gestalt and others do not (Caclin et
al., 2012).
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