11,323 research outputs found
Effect of n+-GaAs thickness and doping density on spin injection of GaMnAs/n+-GaAs Esaki tunnel junction
We investigated the influence of n+-GaAs thickness and doping density of
GaMnAs/n+-GaAs Esaki tunnel junction on the efficiency of the electrical
electron spin injection. We prepared seven samples of GaMnAs/n+-GaAs tunnel
junctions with different n+-GaAs thickness and doping density grown on
identical p-AlGaAs/p-GaAs/n-AlGaAs light emitting diode (LED) structures.
Electroluminescence (EL) polarization of the surface emission was measured
under the Faraday configuration with external magnetic field. All samples have
the bias dependence of the EL polarization, and higher EL polarization is
obtained in samples in which n+-GaAs is completely depleted at zero bias. The
EL polarization is found to be sensitive to the bias condition for both the
(Ga,Mn)As/n+-GaAs tunnel junction and the LED structure.Comment: 4pages, 4figures, 1table, To appear in Physica
Markov property and strong additivity of von Neumann entropy for graded quantum systems
It is easy to verify the equivalence of the quantum Markov property and the
strong additivity of entropy for graded quantum systems as well. However, the
structure of Markov states for graded systems is different from that for tensor
product systems. For three-composed graded systems there are U(1)-gauge
invariant Markov states whose restriction to the pair of marginal subsystems is
non-separable.Comment: 14 pages, to appear J. Math. Phy
Transition temperature of ferromagnetic semiconductors: a dynamical mean field study
We formulate a theory of doped magnetic semiconductors such as
GaMnAs which have attracted recent attention for their possible use
in spintronic applications. We solve the theory in the dynamical mean field
approximation to find the magnetic transition temperature as a function
of magnetic coupling strength and carrier density . We find that
is determined by a subtle interplay between carrier density and magnetic
coupling.Comment: 4 pages, 4 figure
Clustering induced suppression of ferromagnetism in diluted magnets
Ferromagnetism in diluted magnets in the compensated regime p << x is shown
to be suppressed by the formation of impurity spin clusters. The majority bulk
spin couplings are shown to be considerably weakened by the preferential
accumulation of holes in spin clusters, resulting in low-energy magnon
softening and enhanced low-temperature decay of magnetic order. A locally
self-consistent magnon renormalization analysis of spin dynamics shows that
although strong intra-cluster correlations tend to prolong global order, T_c is
still reduced compared to the ordered case.Comment: published version, 5 pages, 4 figure
Global versus Local Ferromagnetism in a Model for Diluted Magnetic Semiconductors Studied with Monte Carlo Techniques
A model recently introduced for diluted magnetic semiconductors by Berciu and
Bhatt (PRL 87, 107203 (2001)) is studied with a Monte Carlo technique, and the
results are compared to Hartree-Fock calculations. For doping rates close to
the experimentally observed metal-insulator transition, a picture dominated by
ferromagnetic droplets formed below a T* scale emerges. The moments of these
droplets align as the temperature is lowered below a critical value Tc<T*. Our
Monte Carlo investigations provide critical temperatures considerably smaller
than Hartree-Fock predictions. Disorder does not seem to enhance ferromagnetism
substantially. The inhomogeneous droplet state should be strongly susceptible
to changes in doping and external fields.Comment: 4 pages, 4 figure
Theory of Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells
We present a mean field theory of ferromagnetism in diluted magnetic
semiconductor quantum wells. When subband mixing due to exchange interactions
between quantum well free carriers and magnetic impurities is neglected,
analytic result can be obtained for the dependence of the critical temperature
and the spontaneous magnetization on the distribution of magnetic impurities
and the quantum well width. The validity of this approximate theory has been
tested by comparing its predictions with those from numerical self-consistent
field calculations. Interactions among free carriers, accounted for using the
local-spin-density approximation, substantially enhance the critical
temperature. We demonstrate that an external bias potential can tune the
critical temperature through a wide range.Comment: 4 pages, 3 figures, submitted to Phys. Rev.
Gamma Rays From The Galactic Center and the WMAP Haze
Recently, an analysis of data from the Fermi Gamma Ray Space Telescope has
revealed a flux of gamma rays concentrated around the inner ~0.5 degrees of the
Milky Way, with a spectrum that is sharply peaked at 2-4 GeV. If interpreted as
the products of annihilating dark matter, this signal implies that the dark
matter consists of particles with a mass between 7.3 and 9.2 GeV annihilating
primarily to charged leptons. This mass range is very similar to that required
to accommodate the signals reported by CoGeNT and DAMA/LIBRA. In addition to
gamma rays, the dark matter is predicted to produce energetic electrons and
positrons in the Inner Galaxy, which emit synchrotron photons as a result of
their interaction with the galactic magnetic field. In this letter, we
calculate the flux and spectrum of this synchrotron emission assuming that the
gamma rays from the Galactic Center originate from dark matter, and compare the
results to measurements from the WMAP satellite. We find that a sizable flux of
hard synchrotron emission is predicted in this scenario, and that this can
easily account for the observed intensity, spectrum, and morphology of the
"WMAP Haze".Comment: 5 pages, 4 figure
- …