965 research outputs found

    Convergence to steady state of solutions of Burgers' equation

    Get PDF
    Consider the initial boundary value problem for Burgers' equation. It is shown that its solutions converge, in time, to a unique steady state. The speed of the convergence depends on the boundary conditions and can be exponentially slow. Methods to speed up the rate of convergence are also discussed

    Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations

    Get PDF
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A new formulation of constraint-preserving boundary conditions of the Sommerfeld type for such systems has recently been proposed. We implement these boundary conditions in a nonlinear 3D evolution code and test their accuracy.Comment: 16 pages, 17 figures, submitted to Phys. Rev.

    Problems which are well-posed in a generalized sense with applications to the Einstein equations

    Full text link
    In the harmonic description of general relativity, the principle part of Einstein equations reduces to a constrained system of 10 curved space wave equations for the components of the space-time metric. We use the pseudo-differential theory of systems which are well-posed in the generalized sense to establish the well-posedness of constraint preserving boundary conditions for this system when treated in second order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation.Comment: Final version to appear in Classical and Qunatum Gravit

    Modeling the Black Hole Excision Problem

    Full text link
    We analyze the excision strategy for simulating black holes. The problem is modeled by the propagation of quasi-linear waves in a 1-dimensional spatial region with timelike outer boundary, spacelike inner boundary and a horizon in between. Proofs of well-posed evolution and boundary algorithms for a second differential order treatment of the system are given for the separate pieces underlying the finite difference problem. These are implemented in a numerical code which gives accurate long term simulations of the quasi-linear excision problem. Excitation of long wavelength exponential modes, which are latent in the problem, are suppressed using conservation laws for the discretized system. The techniques are designed to apply directly to recent codes for the Einstein equations based upon the harmonic formulation.Comment: 21 pages, 14 postscript figures, minor contents updat

    Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates

    Get PDF
    In recent work, we used pseudo-differential theory to establish conditions that the initial-boundary value problem for second order systems of wave equations be strongly well-posed in a generalized sense. The applications included the harmonic version of the Einstein equations. Here we show that these results can also be obtained via standard energy estimates, thus establishing strong well-posedness of the harmonic Einstein problem in the classical sense.Comment: More explanatory material and title, as will appear in the published article in Classical and Quantum Gravit

    Boundary conditions for coupled quasilinear wave equations with application to isolated systems

    Get PDF
    We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form [0,T]×Σ[0,T] \times \Sigma, where Σ\Sigma is a compact manifold with smooth boundaries ∂Σ\partial\Sigma. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on ∂Σ\partial\Sigma. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwell's equations in the Lorentz gauge and Einstein's gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.Comment: 22 pages, no figure

    Finite difference schemes for second order systems describing black holes

    Full text link
    In the harmonic description of general relativity, the principle part of Einstein's equations reduces to 10 curved space wave equations for the componenets of the space-time metric. We present theorems regarding the stability of several evolution-boundary algorithms for such equations when treated in second order differential form. The theorems apply to a model black hole space-time consisting of a spacelike inner boundary excising the singularity, a timelike outer boundary and a horizon in between. These algorithms are implemented as stable, convergent numerical codes and their performance is compared in a 2-dimensional excision problem.Comment: 19 pages, 9 figure

    Testing the well-posedness of characteristic evolution of scalar waves

    Get PDF
    Recent results have revealed a critical way in which lower order terms affect the well-posedness of the characteristic initial value problem for the scalar wave equation. The proper choice of such terms can make the Cauchy problem for scalar waves well posed even on a background spacetime with closed lightlike curves. These results provide new guidance for developing stable characteristic evolution algorithms. In this regard, we present here the finite difference version of these recent results and implement them in a stable evolution code. We describe test results which validate the code and exhibit some of the interesting features due to the lower order terms.Comment: 22 pages, 15 figures Submitted to CQ

    Accurate black hole evolutions by fourth-order numerical relativity

    Full text link
    We present techniques for successfully performing numerical relativity simulations of binary black holes with fourth-order accuracy. Our simulations are based on a new coding framework which currently supports higher order finite differencing for the BSSN formulation of Einstein's equations, but which is designed to be readily applicable to a broad class of formulations. We apply our techniques to a standard set of numerical relativity test problems, demonstrating the fourth-order accuracy of the solutions. Finally we apply our approach to binary black hole head-on collisions, calculating the waveforms of gravitational radiation generated and demonstrating significant improvements in waveform accuracy over second-order methods with typically achievable numerical resolution.Comment: 17 pages, 25 figure
    • …
    corecore