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Abstract: We consider the initial-boundary value problem for systems of quasilinear
wave equations on domains of the form [0, T ] × �, where � is a compact manifold
with smooth boundaries ∂�. By using an appropriate reduction to a first order symmet-
ric hyperbolic system with maximal dissipative boundary conditions, well posedness
of such problems is established for a large class of boundary conditions on ∂�. We
show that our class of boundary conditions is sufficiently general to allow for a well
posed formulation for different wave problems in the presence of constraints and artifi-
cial, nonreflecting boundaries, including Maxwell’s equations in the Lorentz gauge and
Einstein’s gravitational equations in harmonic coordinates. Our results should also be
useful for obtaining stable finite-difference discretizations for such problems.

I. Introduction and Main Results

Motivated in part by the numerical computation of spacetimes on a finite domain with
artificial boundaries, the initial-boundary value problem (IBVP) in general relativity has
started to receive a lot of attention during the last few years (see [1] for a review). A well
posed IBVP for Einstein’s vacuum field equations was formulated for the first time by
Friedrich and Nagy [2] based on tetrad fields and the theory of quasilinear, symmetric
hyperbolic systems with maximal dissipative boundary conditions [3–5]. More recently,
Kreiss and Winicour [6] formulated a well posed IBVP for the harmonic gauge formu-
lation of the Einstein vacuum equations which casts the field equations into a set of ten
coupled quasilinear wave equations subject to four constraints. There are two key ideas
behind the result of [6]. The first one is the realization that the wave equations, when
viewed as first order pseudodifferential equations, have a non-characteristic boundary
matrix. This allows application of the boundary value theory for such systems developed
by Kreiss in the 1970’s [7]. The second idea is the formulation of boundary conditions for
the frozen coefficient form of the harmonic Einstein equations which ensures constraint
propagation and satisfies the estimates required by the Kreiss theory. The well posedness

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81279541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1100 H.-O. Kreiss, O. Reula, O. Sarbach, J. Winicour

of the system and the generalization to the quasilinear case can then be established using
the theory of pseudodifferential operators (see, for instance, [8]).

In a subsequent paper [9], similar results were obtained via more mundane energy
estimates which follow by integration by parts, without resort to the pseudodifferen-
tial calculus. For this, a non-standard energy norm is constructed which is based upon
the choice of a particular time-like direction adapted to the boundary conditions being
imposed. With respect to this energy the Kreiss-Winicour boundary conditions are max-
imal dissipative and so standard well posedness theorems apply even in the quasilinear
case [5,10]. Besides being a simpler proof, or at least a proof that can be followed com-
pletely by a reader not familiar with the pseudodifferential techniques, it implies similar
results for the stability of finite difference approximations to Einstein’s equations in
the harmonic gauge. This follows from considering the semidiscrete system of ordinary
differential equations in time obtained by substituting finite differences for spatial deriv-
atives. If the semidiscrete system is stable, then for appropriate time discretizations the
fully discrete system is guaranteed to be stable [11]. The stability of the semidiscrete
system can be established by the use of finite difference operators satisfying summation
by parts [12], the counterpart of integration by parts, by mimicking the steps leading to
the continuum energy estimate. A summation by parts algorithm based upon the stan-
dard energy norm for the harmonic Einstein problem was developed in [13] and verified
to be stable in numerical tests [14]. The non-standard energy norm employed here and
in [9] provides the basis to formulate a summation by parts algorithm whose numerical
stability follows from established theory.

In this paper we present a more general and geometric version of the foregoing results
which applies to coupled systems of quasilinear wave equations with a certain class of
boundary conditions. The strong well posedness of the resulting IBVP is established by
reducing the wave system to first order symmetric hyperbolic equations subject to maxi-
mal dissipative boundary conditions. This allows us to identify the structure in first order
systems which can be used to establish boundary stability. This structure arises from
the non-absolute nature of time in Lorentzian physics, whereby a Lorentz boost gives
rise to a new conserved energy and so to a different symmetrizer.1 Realizing this, we
are able to restate and prove our earlier results in terms of standard maximal dissipative
boundary conditions for symmetric hyperbolic systems.

As we show, our class of boundary conditions is sufficiently flexible for obtain-
ing well posed IBVP formulations for different models of isolated systems in physics,
including the wave equation, Maxwell’s equations and the Einstein field equations. In
what follows, we present the main mathematical result in Sect. I A with two applications
in Sects. I B and I C. The corresponding proof of strong well posedness is given in
Sects. II and III. We then show in Sect. IV that these results can be applied to electro-
magnetic and gravitational theory to formulate boundary conditions of practical value
for the numerical treatment of isolated systems.

A. Main theorem. Let T > 0, and denote by � a d-dimensional compact manifold with
smooth boundaries ∂�. The type of system our results apply to is a set of quasilinear
wave equations on M = [0, T ] × � coupled both by lower order terms and in the prin-
cipal part, by a change in the characteristic directions via a metric which can depend on
the local value of the fields involved. More precisely, let π : E → M be a vector bundle

1 In theories such as hydrodynamics, the four-velocity determines a preferred time direction and thereby a
unique symmetrizer.
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over M with fibre R
N , let ∇a be a fixed, given connection on E and let gab = gab(�)

be a Lorentz metric on M with inverse gab(�) which depends pointwise and smoothly
on a set of fields � = {�A}A=1,2,...N parameterizing a local section of E . Our sig-
nature convention for gab is (−, +, . . . , +). We shall also assume that each time-slice
�t = {t} × � is space-like and that the boundary T = [0, T ] × ∂� is time-like with
respect to gab(�). In the following, we will refer to local sections in E as vector-valued
functions over M . We will also assume the existence of a positive-definite fibre metric
h AB on E . We consider a system of quasilinear wave equations of the form

gab(�)∇a∇b�
A = S A(�,∇�), (1)

where S A(�,∇�) is a vector-valued function which depends pointwise and smoothly
on its arguments. The wave system (1) is subject to the initial conditions

�A
∣
∣
∣
�0

= �A
0 , nb∇b�

A
∣
∣
∣
�0

= �A
0 , (2)

where �A
0 and �A

0 are given vector-valued functions on �0, and where nb = nb(�)

denotes the future-directed unit normal to �0 with respect to gab. In order to describe
the boundary conditions, let T a = T a(p,�) be a future-directed vector field which
is tangent to T and which is normalized with respect to gab and let N a = N a(p,�)

be the unit outward normal to T with respect to the metric gab. We consider boundary
conditions on T of the following form2:

[

T b + αN b
]

∇b�
A
∣
∣
∣
T

= ca A
B ∇a�B

∣
∣
∣
T

+ d A
B �B

∣
∣
∣
T

+ G A, (3)

where α = α(p,�) > 0 is a strictly positive, smooth function, G A = G A(p) is a
given, vector-valued function on T and the matrix coefficients ca A

B = ca A
B(p,�) and

d A
B = d A

B(p,�) are smooth functions of their arguments. Furthermore, we assume
that ca A

B can be made arbitrarily small in the following sense: Given a local trivial-
ization ϕ : U × R

N �→ π−1(U ) of E such that Ū ⊂ M is compact and contains a
portion U of the boundary T , and given ε > 0, there exists a smooth map J : U →
GL(N , R), p �→ (J A

B(p)) such that the transformed matrix coefficients

c̃a A
B := J A

C ca C
D

(

J−1
)D

B

satisfy the condition

h ABc̃a A
C (�)c̃b B

D(�)Va
C Vb

D ≤ εh ABeab(�)Va
AVb

B, (4)

for all vector-valued one-forms V A
a on U , where here and in the following, eab refers to

the Euclidean metric eab = gab + 2TaTb which is defined for points on T .
The main result of this paper is:

Theorem 1. The IBVP (1,2,3) is well posed. Given T > 0 and sufficiently small and
smooth initial and boundary data �A

0 , �A
0 and G A satisfying the usual compatibility

conditions at ∂�0, there exists a unique smooth solution on M satisfying the evolution
equation (1), the initial condition (2) and the boundary condition (3). Furthermore, the
solution depends continuously on the initial and boundary data.

2 We adopt the Einstein summation convention for the lower case Latin abstract spacetime indices a, b, c,
... as well as for the Capital indices A, B, C , ... on the fibre of E .
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A common situation in which condition (4) is automatically satisfied is given in the
following:

Lemma 1. Let U ⊂ T be an open and bounded subset of T . Assume there exists a
smooth map J : U → GL(N , R), p �→ (J A

B(p)) over U such that the transformed

matrix coefficients c̃a A
B := J A

C ca C
D

(

J−1
)D

B are in upper triangular form with
zeroes on the diagonal, that is

c̃a A
B = 0, B ≤ A.

Then, the condition (4) is satisfied on U .

Proof (cf. The proof of the Liapunov stability theorem). In order to simplify the nota-
tion we use a matrix notation and write c̃a = Jca J−1. Let δ > 0, and define Dδ :=
diag(1, δ, δ2, ..., δN−1) and Jδ := D−1

δ J . Then, ca
δ := Jδca J−1

δ = D−1
δ c̃a Dδ has the

components (ca
δ )A

B = δB−Ac̃a A
B , where here, δB−A refers to the (B − A)th power of δ.

Since c̃a A
B = 0 for B ≤ A we have ca

δ = O(δ), and ca
δ satisfies condition (4) provided

δ > 0 is chosen small enough. ��
The proof of Theorem 1 is given in Sects. II and III. In order to illustrate the ideas

on a simpler example, we start in Sect. II with the wave equation on a fixed background
metric gab, and analyze the general case in Sect. III.

Since many physical systems can be described by systems of wave equations,
Theorem 1 should have many applications. In the following, we mention two such
applications for the initial-boundary value formulation of isolated systems with con-
straints. The physical motivation for the choice of nonreflecting boundary conditions in
these examples is described in detail in Sect. IV.

B. Maxwell’s equations in the Lorentz gauge. The first application describes an electro-
magnetic field on the manifold M = [0, T ]×� with a fixed background metric gab and
corresponding Levi-Civita connection ∇a . As before, we assume that each time-slice
�t = {t} × � is space-like and that the boundary T = [0, T ] × ∂� is time-like. In the
Lorentz gauge C := ∇b Ab = 0, where Ab denotes the 4-vector potential, Maxwell’s
equations assume the form of a system of wave equations,

gab∇a∇b Ac = Rc
d Ad − J c, (5)

where Rab denotes the Ricci tensor belonging to the metric gab and J c is the four-current.
Equation (5) implies that the constraint variable C obeys the following equation:

gab∇a∇bC = −∇c Jc. (6)

Therefore, the imposition of the boundary condition C |T = 0 and the satisfaction of
the continuity equation ∇c Jc = 0 imply that any smooth enough solution of (5) with
initial data satisfying

C |�0 = 0, na∇aC
∣
∣
�0

= 0,

satisfies the constraint C = 0 on M since in this case the constraint propagation system
(6) is homogeneous.



Boundary Conditions for Coupled Quasilinear Wave Equations 1103

Asymptotically nonreflecting boundary conditions at T = [0, T ] × �, in the sense
of Sect. IV, can be formulated by first introducing a null tetrad {K a, La, Qa, Q̄a} which
is adapted to the boundary. Let T a be a future-directed time-like vector field tangent to
T normalized such that gabT aT b = −1. For example, one can define T a by orthogo-
nal projection of the future-directed normal to the time-slices �t onto T . Next, let N a

denote the unit outward normal to T with respect to gab and complete T a and N a to an
orthonormal basis {T a, N a, V a, W a} of Tp M at each point p ∈ T . Then, we define the
null vectors

K a := T a + N a, La := T a − N a, Qa := V a + i W a, Q̄a := V a − i W a,

where i = √−1. Finally, let r denote the areal radius of the cross sections ∂�t . The
following boundary conditions are motivated from the considerations in Sect. IV B:

K a Kb∇a Ab +
2

r
Kb Ab

∣
∣
∣
∣
T

= qK , (7)

(

K a Qb − Qa Kb
) ∇a Ab

∣
∣
∣
T

= qQ, (8)

(

K a Lb + La Kb − Qa Q̄b − Q̄a Qb
)∇a Ab

∣
∣
∣
T

= 0, (9)

where qK and qQ are given real and complex scalars on T . The first condition is a gauge
condition, the second condition controls the electromagnetic radiation through T and the
third condition enforces the constraint C = gab∇a Ab = 0 on T . For the special case of a
flat background with a spherical boundary, these boundary conditions reduce to the ones
proposed in Sect. IV B which are shown to yield small spurious reflections. Therefore,
we expect them to yield small spurious reflections also in the case of asymptotically flat
curved spacetimes as long as the boundary is nearly spherical and located far into the
wave zone.

The evolution equation (5) has the form (1) where E is the tangent bundle over M ,
and the boundary conditions (7,8,9) have the form (3) with

α = 1,

ca c
d = 1

2

[

2Q(a Q̄c)Kd + La K c Kd − K c (

Qa Q̄d + Q̄a Qd
)]

, dc
d = 1

r
Lc Kd ,

Gc = 1

2

[−LcqK + Q̄cqQ + Qcq̄Q
]

.

Since

ca c
d K d = 0,

ca c
d Qd = −Qa K c,

ca c
d Q̄d = −Q̄a K c,

ca c
d Ld = −La K c − Q̄a Qc − Qa Q̄c,

the matrix elements ca c
d are in upper triangular form with zeroes in the diagonal when ex-

pressed in terms of the basis {K a, Qa, Q̄a, Ld}. Therefore, the assumptions of Lemma 1
are satisfied and we obtain a well posed IBVP.
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C. Einstein’s equations in harmonic coordinates. As a second application of our theo-
rem we consider Einstein’s field equations in (generalized) harmonic coordinates. For
this, we follow [15,16] and choose a fixed background metric g̊ab on M = [0, T ] × �

with the property that each time-slice �t = {t} × � is space-like and the boundary
T = [0, T ] × ∂� is time-like with respect to g̊ab. We impose the following gauge
condition on the dynamical metric gab:

Cc := gab
(


c
ab − 
̊ c

ab

)

− Hc = 0. (10)

Here, Hc is a given vector field on M and 
c
ab and 
̊ c

ab are the Christoffel symbols
corresponding to the dynamical and background metrics, respectively. In the particu-
lar case where Hc = 0 and where the background metric is the Minkowski metric in

standard Cartesian coordinates, 
̊ c
ab vanishes, and the condition Cc = 0 reduces to the

usual condition for harmonic coordinates �xµ = 0 for µ = t, x, y, z. However, the
advantage of the condition (10) is that it maintains the covariance of the theory since Cc

is the difference between the two Christoffel symbols,

Cc
ab ≡ 
c

ab − 
̊ c
ab = 1

2
gcd

(

∇̊ahbd + ∇̊bhad − ∇̊d hab

)

, (11)

where hab = gab − g̊ab denotes the difference between the dynamical and the back-
ground metric.

With the condition (10), Einstein’s field equations are equivalent to the wave system

gcd∇̊c∇̊d hab = 2 gef gcdCe
acC f

bd + 4 Cc
d(agb)eCe

c f gd f − 2 gcdR̊
e

cd(agb)e

+16πG

(

Tab − 1

2
gabgcd Tcd

)

+ 2 ∇(a Hb), (12)

where R̊
a

bcd denotes the curvature tensor with respect to g̊ab, Tab the stress-energy
tensor and G denotes Newton’s constant. Solutions of this equation which are smooth
enough imply that the constraint variable Ca satisfies

gcd∇c∇dCa = −Ra
bCb − 16πG∇bTab. (13)

Therefore, the imposition of the boundary condition Ca |T = 0 implies that any smooth
enough solution of (12) with initial data satisfying

Ca |�0 = 0, na∇aCb
∣
∣
�0

= 0,

satisfies the constraint Ca = 0 on M provided the stress-energy tensor is divergence free,
∇bTab = 0.

In order to formulate asymptotically nonreflecting boundary conditions we first con-
struct an adapted local null tetrad {K a, La, Qa, Q̄a} as in the electromagnetic case.
Notice that here these quantities are defined with respect to the dynamical metric gab
and not the background metric g̊ab and as a consequence, they depend on gab. How-
ever, it is important to note that these vectors do not depend on derivatives of gab. A
radial function r on T is defined as the areal radius of the cross sections ∂�t with
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respect to the background metric. The boundary conditions which are motivated from
the considerations in Sect. IV C are the following:

K a K b K c∇̊ahbc +
2

r
K b K chbc

∣
∣
∣
∣
T

= −qK K , (14)

K a K b Lc∇̊ahbc +
1

r
K b Lchbc +

1

r
Qb Q̄chbc

∣
∣
∣
∣
T

= −qQ Q̄, (15)

K a K b Qc∇̊ahbc +
2

r
K b Qchbc

∣
∣
∣
∣
T

= −qK Q, (16)

K a Qb Qc∇̊ahbc − Qa Qb K c∇̊ahbc

∣
∣
∣
T

= −qQ Q, (17)
(

K a Qb Q̄c + La K b K c − Qa K b Q̄c − Q̄a K b Qc
)

∇̊ahbc

∣
∣
∣
T

= −2K a Ha
∣
∣
T , (18)

(

K a Lb Qc + La K b Qc − Qa K b Lc + Q̄a Qb Qc
)

∇̊ahbc

∣
∣
∣
T

= −2Qa Ha
∣
∣
T , (19)

(

K a Lb Lc + La Qb Q̄c − Qa Q̄b Lc − Q̄a Qb Lc
)

∇̊ahbc

∣
∣
∣
T

= −2La Ha
∣
∣
T , (20)

where qK K and qQ Q̄ are real-valued given functions on T and qK Q and qQ Q are com-
plex-valued given functions on T . The evolution equation (12) has the form (1) where
E is the vector bundle of symmetric, covariant tensor fields on M and the boundary con-
ditions (14–20) have the form (3), where α=1 and ca bc

de is in upper triangular form when
expressed in terms of the basis {K b K c,K (b Lc),K (b Qc),Qb Qc, Q(b Q̄c), L(b Qc), Lb Lc}.

For the case where g̊ab is the Minkowski metric and hab is treated as a linear perturba-
tion thereof, the boundary conditions (14–17) reduce to the ones proposed in Sect. IV C
for a spherical boundary. As in the preceding application to electrodynamics, we expect
these boundary conditions to yield small spurious reflections in the case of a nearly
spherical boundary in the wave zone of an asymptotically flat curved spacetime. Their
content can be clarified by considering the case of a wave incident on a plane boundary.
The discussion in Sect. IV A shows that the first three conditions (14),(15) and (16) are
related to the gauge freedom; and the condition (17) controls the gravitational radia-
tion. The remaining conditions (18),(19) and (20) enforce the constraint Ca = 0 on the
boundary.

II. The Wave Equation on a Curved Background

In this section we prove Theorem 1 for the case of a single wave equation

gab∇a∇bφ = S (21)

on M = [0, T ] × �. For simplicity, we also assume that gab and S are independent of
φ and that ∇a is the Levi-Civita connection with respect to gab. The IBVP consists in
finding solutions of (21) subject to the initial conditions

φ|�0
= φ0, nb∇bφ

∣
∣
∣
�0

= π0, (22)

where φ0 and π0 are given functions on �0, and the boundary conditions
[

T b∇bφ + αN b∇bφ
]

T
= G, (23)
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where G is a given function on T . Here, nb and N b denote the future-directed unit vector
field to the time-slices �t and the outward unit normal vector field to T , respectively,
T b is an arbitrary future-directed time-like vector field which is tangent to the bound-
ary surface T and α is a strictly positive function on T . Without loss of generality, we
assume that T a is normalized such that gabT aT b = −1. Furthermore, by redefining φ

and S if necessary, we may also assume that the boundary data G vanishes identically.
In order to show well posedness for this problem, we use a geometric reduction to a

first order symmetric hyperbolic system with maximal dissipative boundary conditions
[3,4,17]. First, introducing the variables Va = ∇aφ, the wave equation can be rewritten
as the first order system

∇aφ = Va, (24)

gab∇a Vb = S, (25)

∇a Vb − ∇bVa = 0. (26)

Next, we specify any future-directed time-like vector field ua and contract the first and
the last equation with it. This yields the evolution system

£uφ = ua Va ≡ �, (27)

gab∇a Vb = S, (28)

£u Vb = ∇b�, (29)

where £u denotes the Lie derivative with respect to ua . This system is subject to the
initial and boundary conditions

φ|�0
= φ0, nbVb

∣
∣
∣
�0

= π0, ι∗0Vb = ι∗0∇bφ0, (30)
[

T bVb + αN bVb

]

T
= 0, (31)

where ι0 : �0 → M is the inclusion map, and subject to the constraint Ca = 0, where
the constraint variable Ca is defined as Ca = Va − ∇aφ. The evolution equations (27)
and (29) imply that Ca is Lie-dragged by the time evolution vector field ua ,

£uCa = 0.

In the following, we assume that ua is pointing away from the domain at the boundary.
This implies that a solution of (27,28,29) with constraint-satisfying initial data automat-
ically satisfies the constraints everywhere on M , and no extra boundary conditions are
needed in order to ensure that the constraint Ca = 0 propagates.

Still, there is a huge freedom in choosing the evolution vector field ua ; different
choices lead to first order evolution systems (27,28,29) which are inequivalent to each
other if the solution is off the constraint surface Ca = 0. In this work we exploit this
freedom in order to obtain energy estimates which allow for an appropriate control of
the fields not only in the bulk but also on the boundary of the domain (see the estimate
(37) below). In order to analyze this, following [17] we rewrite the evolution system
(28,29) in the form

Aa
bc∇a V c ≡ −ua(∇a Vb − ∇bVa) + ub∇a V a = ub S,
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where the symbol is given by Aa
bc = −uagbc + 2δa

(buc). Since Aa
bc is symmetric in

bc and since uaAa
bc = −uauagbc + 2ubuc is positive definite, the evolution system is

symmetric hyperbolic. In particular, the evolution equations imply that

∇a(Aa
bcV bV c) = (∇aAa

bc)V bV c + 2(ubV b)S.

Integrating both sides of this equation over the manifold M = [0, T ] × � and using
Gauss’ theorem, one obtains3

∫

�T

naAa
bcV bV c =

∫

�0

naAa
bcV bV c +

∫

T

NaAa
bcV bV c

−
∫

M

[

(∇aAa
bc)V bV c + 2(ubV b)S

]

. (32)

The following two conditions from the theory of symmetric linear operators (see [4])
guarantee that the first order IBVP (27,28,29,30,31) is well posed:

(i) naAa
bc is positive definite.

(ii) For each p ∈ T , the subspace N−(p) ⊂ Tp M consisting of the vectors V b(p)

satisfying the boundary condition (31) at p is maximal non-positive. This means
that NaAa

bc(p)V b(p)V c(p) ≤ 0 for all V b(p) ∈ N−(p) and that N−(p) does
not possess a proper extension with this property.

For the following, we choose the time evolution vector field ua such that ua is every-
where future-directed and time-like on M and such that ua lies in the plane spanned by
T a and N a at each point of the boundary, more specifically,

ua
∣
∣
T = T a + δN a,

with 0 < δ < 1 a function on T . The following two lemmas imply the satisfaction of
the conditions (i) and (ii) for an appropriate choice of δ.

Lemma 2. naAa
bc(p) is positive definite for all p ∈ M.

Proof Let hab = gab + nanb be the induced metric on �t and expand ua = µ(na + ūa),
where µ = −naua . Since ua is future-directed and time-like, µ > 0 and ūa ūa < 1.
Therefore,

naAa
bc = µ

(

hbc + nbnc + 2n(būc)
)

is positive definite. ��

Lemma 3. Let 0 < δ ≤ α(1 + α2)−1. Then, the boundary spaces N−(p) are maximal
non-positive for all p ∈ T .

3 Notice that since na is future directed, its flow increases t ; hence in coordinates (t, xi ), where t paramet-
rizes [0, T ] and xi are local coordinates on �, we have nt > 0 and nt < 0.
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Proof (cf. Appendix B in Ref. [9]). Fix a point p ∈ T , and let V b ∈ Tp M . We have

NaAa
bcV bV c = [

δ TbTc + δ Nb Nc + 2T(b Nc) − δ Hbc
]

V bV c

= −δ
[

(T bVb)
2 + (N bVb)

2 + HbcV bV c
]

+2
[

δ(T bVb)
2 + δ(N bVb)

2 + (T bVb)(N cVc)
]

,

where Hbc = gbc + TbTc − Nb Nc is the induced metric on the orthogonal complement
of the plane spanned by T b and N b. Eliminating the terms (T bVb) in the second square
bracket on the right-hand side using the boundary condition (31) we obtain

NaAa
bcV bV c = −δ

[

(T bVb)
2 + (N bVb)

2 + HbcV bV c
]

+ 2
[

δ(α2 + 1) − α
]

(N bVb)
2.

(33)

The last term on the right-hand side is non-positive by the assumption of the lemma.
Therefore, NaAa

bc is negative-definite on the subspace of vectors V a satisfying the
boundary condition. Finally, we observe that N−(p) is maximal since its dimension is
d = dim Tp M − 1, while the symmetric bilinear form NaAa

bc has signature (1, d). ��
If we relax the assumption of homogeneous boundary data and replace the condition

(31) by the condition
[

T bVb + αN bVb

]

T
= G, (34)

we obtain, instead of (33),

NaAa
bcV bV c = −δ

[

(T bVb)
2 + (N bVb)

2 + HbcV bV c
]

+ 2
[

δ(α2 + 1) − α
]

(N bVb)
2

+2(1 − 2δα)(N bVb)G + 2δ G2.

Let 0 < ρ < 1 and set δ = (1 − ρ)α(1 + α2)−1. Then, we have (cf. Appendix B in Ref.
[9])

NaAa
bcV bV c ≤−δ

[

(T bVb)
2 + (N bVb)

2 + HbcV bV c
]

+

[

2δ +
(1 − 2δα)2

2αρ

]

G2. (35)

This and the positivity of naAa
bc implies the existence of strictly positive constants C1

and C2 (depending on δ and ρ) such that

NaAa
bcV bV c ≤ −C1naAa

bcV bV c + C2G2. (36)

Using this in the identity (32) we obtain the estimate
∫

�t

naAa
bcV bV c ≤

∫

�0

naAa
bcV bV c − C1

∫

Tt

naAa
bcV bV c + C2

∫

Tt

G2

+C3

t∫

0

⎡

⎢
⎣

∫

�s

naAa
bcV bV c +

∫

�s

S2

⎤

⎥
⎦ ds
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for all 0 ≤ t ≤ T , where C1, C2 and C3 are strictly positive constants which are inde-
pendent of V b, and Tt := [0, t] × ∂�. Applying Gronwall’s lemma4 to the function

y(t) :=
t∫

0

∫

�s

naAa
bcV bV cds we obtain from this

Lemma 4. Let T > 0. There is a constant C = C(T ) ≥ 1 such that all smooth enough
solutions to the IBVP (28,29,30,34) satisfy the inequality

∫

�t

naAa
bcV bV c +

∫

Tt

naAa
bcV bV c

≤ C

⎡

⎢
⎣

∫

�0

naAa
bcV bV c +

∫

Tt

G2 +

t∫

0

⎛

⎜
⎝

∫

�s

S2

⎞

⎟
⎠ ds

⎤

⎥
⎦ , (37)

for all 0 ≤ t ≤ T , where Tt := [0, t] × ∂�.

Since any solution of this problem also satisfies uaCa = ua Va −£uφ = 0, £uCa = 0
and ι∗0Ca = ι∗0(Va − ∇aφ) = 0, and since ua points outward from the domain at T , the
constraint Ca = 0 is satisfied everywhere on M . From this and the previous lemma, we
have established:

Theorem 2. The second order problem (21,22,23) is strongly well posed: given smooth
initial and boundary data φ0, π0 and G satisfying the usual compatibility conditions at
∂�0, there exists a unique smooth solution satisfying the estimate (37) with V a replaced
by ∇aφ.

Remark 1. The important feature of the estimate (37) is the second term on the left-
hand side which yields a L2 boundary estimate for the gradient of φ. This estimate is
obtained by choosing the time evolution vector field ua in such a way that the boundary
matrix NaAa

bc is negative definite on the subspace of vectors satisfying the boundary
conditions. As we will see (Lemma 6 in the next section), this property is important
for systems of wave equations since it allows the coupling of the boundary conditions
through small enough terms involving first derivatives of the fields. If, on the other hand,
ua is chosen to be tangent to the boundary, the boundary matrix has a nontrivial kernel
and one does not obtain an estimate for the full gradient of φ on the boundary from the
first order system. However, this does not affect the strong well posedness of the second
order system which is independent of ua .

As an example, consider the wave equation on the half-plane � = R+ × R
2 with the

flat metric g = −dt2 + dx2 + dy2 + dz2. In this case, we have

na∂a = ∂t , N a∂a = −∂x T a∂a = 1

p

(

∂t − β y∂y − βz∂z
)

,

with (β y)2 + (βz)2 < 1 and p := √

1 − (β y)2 − (βz)2, and the boundary condition (23)
reduces to

[

φt + pαφx − β yφy − βzφz
]

x=0 = pG, (38)

4 See, for instance, Lemma 3.1.1 in Ref. [18].
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where φt := ∂tφ etc. Choosing ua = p(T a + δN a) with 0 < δ < 1, the energy norm
for this problem reads

∫

�t

naAa
bcV bV c=

∞∫

0

∞∫

−∞

∞∫

−∞

[

φ2
t + φ2

x + φ2
y + φ2

z + 2φt
(

δpφx + β yφy + βzφz
)]

dy dz dx .

This is similar to the norm we used in Ref. [9] for obtaining an a priori energy estimate
for the second order wave equation with boundary condition (38).

III. Systems of Wave Equations and Proof of Main Theorem

In order to show that the system (1,2,3) yields a well posed IBVP, we follow the argu-
ments given in Sect. II and reduce it to a first order symmetric hyperbolic system with
maximal dissipative boundary conditions. Let Va

A := ∇a�A, and let ua(p,�) denote
a future-directed time-like vector field on M such that

ua
∣
∣
T = T a + δN a,

with 0 < δ < 1 a function on T to be determined. Then (1) can be rewritten as the first
order evolution system

ua∇a�A = ua Va
A, (39)

gab(�)∇a Vb
A = S A(�, V ), (40)

ua
(

∇a Vb
A − ∇bVa

A
)

= ua R A
Bab�

B, (41)

where R A
Bab denotes the curvature belonging to the connection ∇a . At this point, we

stress that the connection ∇a is a fixed background connection on the vector bundle E ,
and not the Levi-Civita connection belonging to the metric gab(�), so that R A

Bab does
not depend on � nor its derivatives. The system (39,40,41) is subject to the constraint
Cb

A = 0, where Cb
A := ∇b�

A − Vb
A. Equations (39,41) imply that the constraint

variable Cb
A is Lie-dragged by ua :

£uCb
A ≡ ua∇aCb

A + (∇bua)Ca
A = 0.

Therefore, any smooth enough solution of the first order problem (39,40,41) belonging
to initial data with Cb

A = 0 satisfies the constraint Cb
A = 0 everywhere it is defined.

The initial condition is

�A
∣
∣
∣
�0

= �A
0 , nbV A

b

∣
∣
∣
�0

= �A
0 , ι∗0V A

b = ι∗0∇b�
A
0 , (42)

and the boundary condition (3) reads
[

T bVb + αN bVb

]

T
= ca A

B Va
B
∣
∣
∣
T

+ d A
B �B

∣
∣
∣
T

+ G A. (43)

In order to analyze the well posedness of the first order IBVP (39,40,41,42,43) we
first linearize the system by replacing the coefficients gab(�), S A(�,∇�), T b(�),
N b(�), α(�), ca A

B(�), d A
B(�) by smooth functions gab, S A, T b, N b, α, ca A

B , d A
B ,

respectively. Local in time well posedness for the original quasilinear system follows



Boundary Conditions for Coupled Quasilinear Wave Equations 1111

by iteration from the well posedness result for the linear system with enough differen-
tiability5. Next, we use a partition of unity in order to localize the problem. With this,
it is sufficient to consider a local trivialization ϕ : U × R

N �→ π−1(U ) of E such that
Ū ⊂ M is compact and contains a portion U of the boundary T . Let ε > 0. According
to the assumption there exists a smooth map Jε : U → GL(N , R), p �→ (Jε(p)) such
that the transformed matrix coefficients c̃a := Jεca J−1

ε satisfy the condition (4) for all
vector-valued one-forms Va onU . Setting h AB(ε) := (J T

ε h Jε)AB = hC D(Jε)
C

A(Jε)
D

B ,
we can reformulate this condition by stating that

h AB(ε)ca A
C (�)cb B

D(�)Va
C Vb

D ≤ εh AB(ε)eab(�)Va
AVb

B, (44)

for all vector-valued one-forms V A
a on U . The system (39,40,41) can be written in the

form
(−�h AB(ε)ua∇a 0

0 h AB(ε)Aa
bc∇a

)(

�B

V c B

)

= S(�, V ), (45)

where � > 0 is to be determined, Aa
bc = −uagbc + 2δa

(buc) and

S(�, V ) =
(−�h AB(ε)ua Va

B

−h AB(ε)RB
Cab�

C ua + h AB(ε)ub SB(�, V )

)

.

Let B(na; (�, W ), (�, V )) denote the bilinear form belonging to the principal symbol
of (45), that is, for an arbitrary one-form wa on M define

B(wa; (�, W ), (�, V )) := −�uawah AB(ε)� A�B + h AB(ε)waAa
bcW b AV c B .

We have

Lemma 5. Let � > 0. Then, B(na; (�, W ), (�, V )) is symmetric in (�, W ), (�, V )

and positive definite for wa = ua and wa = na. Therefore, the system (45) is symmetric
hyperbolic.

Proof The symmetry property follows immediately from the symmetry of h AB(ε) and
the symmetry of Aa

bc in bc. In order to check the positivity statements, let wa = ua ,
γ := √−uaua and ûa := γ −1ua . Since Aa

bcua = γ 2
[

gbc + 2ûbûc
]

, we find

B(ua; (�, V ), (�, V )) = γ 2
[

�h AB(ε)�A�B + (gab + 2ûa ûb)h AB(ε)Va AV b B
]

which is manifestly positive definite. The proof that B(na; (�, V ), (�, V )) is positive
definite is similar to the proof of Lemma 2. ��

As in the previous section we obtain well posedness of the linearized system provided
we can show that each boundary space

N−(p) := {(�, V ) ∈ R
N × R

(d+1)N :
[

T b(p) + α(p)N b(p)
]

Vb
A

= ca A
B(p)Va

B + d A
B(p)�B}, p ∈ U ,

is maximal non-positive with respect to B(Na; (�, V ), (�, V )). This is the statement of
the next lemma.

5 See, for instance, [10,18].
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Lemma 6. Set δ := α(1+α2)−1/2 and κ := 2[2δ+(1−2δα)2/α]2. Choose ε > 0 small
enough such thatκε < δ and� > 0 large enough such that 2κh AB(ε)d A

C d B
D�C�D ≤

δ�h AB(ε)�A�B for all � ∈ R
N . Then, the boundary space N−(p) is maximal non-

positive for all p ∈ U .

Proof Let p ∈ U . We have, as in the proof of Lemma 3,

B(Na; (�, V ), (�, V )) = −�ua Nah AB(ε)�A�B + h AB(ε)NaAa
bcV b AV c B

= −δh AB(ε)
[

(T aT b + N a N b + Hab)Va
AVb

B + ��A�B
]

+2
[

δ T aT b + δ N a N b + T a N b
]

h AB(ε)Va
AVb

B . (46)

Let (�A, Va
A) ∈ N (p). Then, T a Va

A = −αN a Va
A + G̃ A with G̃ A := ca A

B Va
B +

d A
B�B , and we may use this equation in order to eliminate the terms (T a Va

A) in the
second bracket on the right-hand side of (46). This yields

B(Na; (�, V ), (�, V )) ≤ −δh AB(ε)
[

(T aT b + N a N b + Hab)Va
AVb

B + ��A�B
]

+

[

2δ +
(1 − 2δα)2

α

]

h AB(ε)G̃ AG̃ B,

where we have set δ := α(1+α2)−1/2 and used the boundary estimate (35) with ρ = 1/2.
Now,

h AB(ε)G̃ AG̃ B ≤ 2h AB(ε)ca A
C Va

C cb B
DVb

D + 2h AB(ε)d A
C�C d B

D�D

≤ 2εh AB(ε)eabVa
AVb

B + 2h AB(ε)d A
C d B

D�C�D, (47)

where we have used the estimate (44) in the last step. Recalling that eab = gab+2T aT b =
T aT b + N a N b + Hab and the definition of κ in the assumption of the lemma we find

B(Na; (�, V ), (�, V )) ≤ −δh AB(ε)
[

eabVa
AVb

B + ��A�B
]

+ κ
[

εh AB(ε)eabVa
AVb

B + h AB(ε)d A
C d B

D�C�D
]

.

The non-positivity of N−(p) now follows from the assumptions on ε and �. Finally, we
observe that an element in N−(p) is characterized by N linear conditions in a (d + 2)N -
dimensional vector space which implies that dim N−(p) ≥ (d + 1)N . On the other
hand, from Eq. (46) we see that the signature of B(Na; ., .) is given by (N , (d + 1)N ).
Therefore, dim N−(p) = (d + 1)N and the maximality of N−(p) follows. ��

IV. Boundary Conditions for Isolated Systems

We consider here boundary conditions for an isolated system emitting radiation. If, for
computational purposes, the evolution domain of such a system has a finite (artificial)
boundary, some artificial boundary condition must be imposed. If one knew the correct
boundary data for the analytic problem, then in principle one could use any boundary
condition corresponding to a well posed IBVP. However, the determination of the cor-
rect boundary data is in general a global problem, in which the boundary data must be
determined by extending the solution to infinity either by matching to an exterior (lin-
earized or nonlinear) solution obtained by some other means. The matching approach
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has been reviewed elsewhere [19]. Here we consider an alternative approach in which
homogeneous boundary data can be assigned in such a way that the accuracy of the
boundary condition becomes exact in the limit that the boundary is extended to infinity.
(Such boundary conditions would also be beneficial to the matching approach because
the corresponding boundary data would be small so that numerical or other error would
also have a small effect.) Artificial boundary conditions for an isolated radiating system
for which homogeneous data is approximately valid are commonly called absorbing
boundary conditions (see e.g. [20–25]), or nonreflecting boundary conditions (see e.g.
[26–28]) or radiation boundary conditions (see e.g. [29]). Such boundary conditions
are advantageous for computational use. However, local artificial boundary conditions
are not perfectly nonreflecting in general. Here, to be more precise, we consider non-
reflecting boundary conditions in the sense of boundary conditions for a well posed
problem for which homogeneous data produces no spurious reflection in the limit that
the boundary approaches an infinite sphere. The extensive literature on improved ver-
sions of nonreflecting boundary conditions involves higher order and nonlocal methods.
Our interest here is to investigate the optimal choice of local first order homogeneous
boundary conditions on a spherical boundary for the constrained Maxwell and linearized
Einstein problems expressed in terms of the gauge dependent variables Aµ and γ µν . See
[30–32] for the construction of higher-order and higher-accurate boundary conditions
for Einstein’s equations.

We base our discussion on waves from an isolated system satisfying a system of
flat space wave equations. We use Greek indices to denote standard inertial coordi-
nates xµ = (t, x, y, z) in which the components of the Minkowski metric ηµν are
diag(−1, 1, 1, 1). In the case of a scalar field �, we thus consider the wave equation

ηαβ∂α∂β� =
(

−∂2
t + ∂2

x + ∂2
y + ∂2

z

)

� = S,

where the source S has compact support. Outside the source, we assume that the solution
has the form

� = f (t − r, θ, φ)

r
+

g(t − r, θ, φ)

r2 +
h(t, r, θ, φ)

r3 , (48)

where (r, θ, φ) are standard spherical coordinates and f , g and h and their derivatives
are smooth bounded functions. These assumptions determine the exterior retarded field
of a system emitting outgoing radiation. The simplest case is the monopole radiation

� = f (t − r)

r

which satisfies (∂t + ∂r )(r�) = 0. This motivates the use of a Sommerfeld condition

1

r
(∂t + ∂r )(r�)|R = q(t, R, θ, φ)

on a finite boundary r = R.
The resulting Sommerfeld boundary data q in the general case (48) falls off as 1/R3,

so that a homogeneous Sommerfeld condition introduces an error which is vanishingly
small for increasing R. As an example, for the dipole solution

�Dipole = ∂z
f (t − r)

r
= −

(
f ′(t − r)

r
+

f (t − r)

r2

)

cos θ
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we have

q = f (t − r) cos θ

R3 . (49)

A homogeneous Sommerfeld condition at r = R would lead to a solution �̃Dipole
containing a reflected ingoing wave. For large R,

�̃Dipole ∼ �Dipole + κ
F(t + r − 2R) cos θ

r
,

where ∂t f (t)= F(t) and the reflection coefficient has asymptotic behaviorκ = O(1/R2).
More precisely, the Fourier mode

�̃Dipole(ω) = ∂z

(

eiω(t−r)

r
+ κω

eiω(t+r−2R)

r

)

,

satisfies the homogeneous boundary condition (∂t +∂r )(r�̃Dipole)(ω)|R = 0 with reflec-
tion coefficient

κω = 1

2ω2 R2 + 2iωR − 1
∼ 1

2ω2 R2 . (50)

Note that (50) and (49) satisfy

κ ∼ q R. (51)

In the case of a system of equations κ will have N components corresponding to the
number of modes generated in the reflected wave. The boundary conditions lead to a
system of simultaneous equations relating κ to the components of the Sommerfeld data
q. If these equations are nondegenerate then (51) continues to hold. However, degener-
acies could conceivably lead to weaker asymptotic falloff of κ . (It would be interesting
to determine whether such cases exist.) In any case, (51) gives the optimum allowable
behavior of the reflection coefficients so that the asymptotic behavior of the Sommerfeld
data q is a good indicator of the quality of the boundary condition. This forms the basis
of our investigation of the Maxwell and linearized Einstein equations with a spherical
boundary in Sects. IV B and IV C.

A. A plane boundary. The key ideas in the above example are that (i) the Sommerfeld
condition is only satisfied exactly by waves traveling in the radial direction and (ii) in
the asymptotic limit r → ∞ all waves from an isolated system propagate in the radial
direction. This allows us to reformulate our discussion of the Sommerfeld condition by
considering a wave � propagating in the domain x < 0, which is incident on a plane
boundary at x = 0 with the boundary condition

K α∂α�|x=0 = 0,

where K α∂α = ∂t + ∂x is the characteristic direction determined by the outward normal
to the boundary ∂x and the time direction ∂t . This homogeneous condition is satisfied
for plane waves � = G(t + kx x + ky y + kzz) incident on the boundary only for the
single case (kx , ky, kz) = (1, 0, 0), i.e. a plane wave propagating in the outgoing normal
direction. Plane waves in the normal direction pass through the boundary, whereas plane
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waves incident in other directions on the boundary give rise to a reflected wave. We
will take advantage of this simplification of the plane wave case in discussing boundary
conditions for electromagnetic and gravitational waves. The results then suggest how to
formulate boundary conditions for an isolated electromagnetic or gravitational system
with a spherical boundary of radius R, where in the limit R → ∞ all radiation is incident
normally.

For the electromagnetic case, we describe the field by means of a vector potential
Aµ satisfying the Lorentz gauge condition. Maxwell’s equations in a flat spacetime with
Minkowski metric ηµν then reduce to the wave equations

ηαβ∂α∂β Aµ = 0

subject to the constraint

C := ∂µ Aµ = 0

introduced by the Lorentz gauge condition. This constraint keeps us from requiring that
each component of Aµ satisfy a homogeneous Sommerfeld condition, in contrast to the
scalar example. The electromagnetic case also differs from the scalar case because of
the remaining gauge freedom allowed by the Lorentz condition.

An electromagnetic plane wave incident in the outgoing normal direction can be
described by the real part of the vector potential

Aµ = F(t − x)Qµ + G(t − x)Kµ,

where F(t − x) is complex, Qµ = Y µ + i Zµ is a complex null polarization vector,
G(t − x) represents gauge freedom and K µ = T µ + Xµ, in terms of the orthonormal
tetrad (T µ, Xµ, Y µ, Zµ) aligned with the coordinate axes satisfying

ηµν = −TµTν + Xµ Xν + YµYν + ZµZν .

In order to formulate a gauge invariant boundary condition we consider the corre-
sponding electromagnetic field tensor

Fµν = ∂µ Aν − ∂ν Aµ = −F ′(t − x)(KµQν − QµKν).

Here we adopt the notation ∂u F(u) = F ′(u). For this plane wave, all components of
Fµν satisfy

K µFµν = 0.

However, this condition rules out the possibility of a static electric field oriented nor-
mal to the boundary. For the purpose of formulating a boundary condition which only
restricts propagating waves it suffices to consider the weaker condition

K µQν Fµν = 0. (52)

In terms of the electric and magnetic field components tangential to the boundary, (52)
corresponds to the plane wave relations Etan · Btan = 0 and |Etan| = |Btan|, with the
corresponding Poynting vector in the outward normal direction.

We can incorporate (52) into the following homogeneous Sommerfeld boundary
conditions for the vector potential:

K ν K µ∂µ Aν = 0, (53)

Qν K µ∂µ Aν = K ν Qµ∂µ Aν . (54)
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The remaining boundary condition can be expressed in Sommerfeld form by rewriting
the constraint as

C = 1

2

(−Lν K µ − K ν Lµ + Qν Q̄µ + Q̄ν Qµ
)

∂µ Aν = 0, (55)

where Lµ = T µ − Xµ. Here (K µ, Lµ, Qµ) form a null tetrad according to the conven-
tions

ηµν = −K(µLν) + Q(µ Q̄ν). (56)

We assume throughout the following that the spin transformation freedom Qµ → eiα Qµ

has been restricted according to K µ∂µα = 0. The Sommerfeld boundary conditions (53),
(54) and (55) have the required hierarchical, upper triangular form for a well posed IBVP,
see Lemma 1.

For the purpose of extending this approach to the gravitational case, we write the
linearized Einstein vacuum equations in the form

ηαβ∂α∂βγ µν = 0 (57)

subject to the harmonic constraints

Cν := −∂µγ µν = 0. (58)

Here, to linearized accuracy, we set
√−ggµν = ηµν +γ µν so that γµν = −hµν + 1

2ηµνh
represents the densitized version of the metric perturbation gµν = ηµν +hµν . (Indices of
linearized objects are raised and lowered with the Minkowski metric.) The corresponding
linearized curvature tensor is

2Rµνρσ = ∂ρ∂νhµσ − ∂σ ∂νhµρ − ∂ρ∂µhνσ + ∂σ ∂µhνρ. (59)

In the linear approximation, the diffeomorphism freedom reduces to the gauge freedom
hµν → hµν + 2∂(µξν), which leaves Rµνρσ invariant.

A plane wave incident on the boundary in the outgoing normal direction is given by
the real part of

hµν = F(t − x)QµQν + 2∂(µξν)(t − x) = F(t − x)QµQν − 2K(µξν)(t − x), (60)

where the ξν(t − x) term describes a pure gauge wave. Similarly, a plane wave incident
on the boundary in the ingoing normal direction is given by

hµν = F(t + x)QµQν − 2L(µξν)(t + x). (61)

In these plane waves, F describes the gravitational radiation. The curvature tensors
corresponding to (60) and (61) are, respectively,

Rµνρσ = 2F ′′(t − x)K[µQν]Q[ρ Kσ ] (62)

and

Rµνρσ = 2F ′′(t + x)L [µQν]Q[ρ Lσ ]. (63)
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The analogue of the boundary conditions (14),(15),(16) and (17) for a plane boundary
are

K µK ρ K σ ∂µhρσ = −qK K , (64)

K µK ρ Lσ ∂µhρσ = −qQ Q̄, (65)

K µK ρ Qσ ∂µhρσ = −qK Q, (66)

(K µQρ Qσ − QµQρ K σ )∂µhρσ = −qQ Q . (67)

The outgoing plane wave (60) satisfies the homogeneous boundary conditions qK K =
qQ Q̄ = qK Q = qQ Q = 0. For the ingoing plane wave (61),

qK K = −8K σ ξ ′
σ (t + x),

qQ Q̄ = −4Lσ ξ ′
σ (t + x),

qK Q = −4Qσ ξ ′
σ (t + x),

qQ Q = −4F̄ ′(t + x),

all evaluated on the boundary at x = 0. Thus the boundary conditions (64),(65) and (66)
control the gauge waves entering through the boundary; and the condition (67) controls
the gravitational waves entering.

In order to formulate a boundary condition with gauge invariant meaning analo-
gous to (52) in the Maxwell case, we consider the linearized curvature tensor. Outgoing
wave boundary conditions on the curvature tensor could be imposed by requiring that
the Newman-Penrose component �0 = K µQν Qρ K σ Rµνρσ vanish on the boundary.
(See [2] for a discussion of the appropriateness of this boundary condition.) However,
this requirement involves second derivatives in the normal direction when expressed in
terms of γµν . Instead, we require � := K µQν QρT σ Rµνρσ = 0 on the boundary. The
condition � = 0 is equivalent to �0 = 0 if the Ricci component Rµν QµQν = 0, e.g.
if the vacuum Einstein equations are satisfied.

A straightforward calculation leads to

− 2� = K µQν QρT σ (∂ρ∂νγµσ − ∂σ ∂νγµρ − ∂ρ∂µγνσ + ∂σ ∂µγνρ) +
1

2
Qν Qρ∂ν∂ργ

= K µQν QρT σ
(−∂σ ∂νγµρ − ∂ρ∂µγνσ + ∂σ ∂µγνρ

)

+
1

2

(

K µK σ + Qµ Q̄σ
)

Qν Qρ∂ν∂ργµσ

= Qν∂ν

(
1

2

(

K µK σ + Qµ Q̄σ
)

Qρ∂ργµσ − K µQρT σ ∂µγσρ

)

+T σ ∂σ

(−K µQν Qρ∂νγµρ + K µQν Qρ∂µγνρ

)

. (68)

Thus, besides containing no second derivatives normal to the boundary, the condition
� = 0 can be reduced to two first order conditions by factoring out the Qν∂ν and T σ ∂σ

derivatives in (68) which are tangential to the boundary. There are many ways this can be
done. In order to obtain first order conditions which fit into a hierarchy of Sommerfeld
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conditions, we modify (68) according to the steps

− 2� = Qν∂ν

(
1

2
(K µK σ + Qµ Q̄σ )Qρ∂ργµσ − 1

2
K ρ QµLσ ∂ργµσ

−1

2
K µQρ K σ ∂µγσρ

)

+T σ ∂σ

(−K µQν Qρ∂νγµρ + K µQν Qρ∂µγνρ

)

(69)

= 1

2
Qν∂ν

(

(K µK σ Qρ + QµK σ Lρ − QµQσ Q̄ρ)∂ργµσ

−2QµCµ − K µQρ K σ ∂µγσρ

)

+T σ ∂σ

(−K µQν Qρ∂νγµρ + K µQν Qρ∂µγνρ

)

(70)

= 1

2
Qν∂ν

(

(K µK σ Qρ − QµQσ Q̄ρ)∂ργµσ − 2K µQρ K σ ∂µγσρ − 2QµCµ

)

+T σ ∂σ

(

K µQν Qρ∂µγνρ

)

. (71)

Thus since the derivatives Qν∂ν and T ν∂ν are tangential to the boundary, we can enforce
� = 0 on the boundary through the first order boundary conditions

Qα Qβ K µ∂µγαβ = 0, (72)

K α Qβ K µ∂µγαβ − 1
2 K α K β Qµ∂µγαβ + 1

2 Qα Qβ Q̄µ∂µγαβ = 0. (73)

These two boundary conditions can then be included in a hierarchical set of Sommerfeld
boundary conditions, according to the example

K α K β K µ∂µγαβ = 0, (74)

Qα Qβ K µ∂µγαβ = 0, (75)

Qα Q̄β K µ∂µγαβ = 0, (76)

K α Qβ K µ∂µγαβ − 1
2 K α K β Qµ∂µγαβ + 1

2 Qα Qβ Q̄µ∂µγαβ = 0. (77)

The constraints Cρ = 0, which determine the remaining boundary conditions, can be
cast in the Sommerfeld form

Cρ = 1

2

(

Lν K µ + K ν Lµ − Q̄ν Qµ − Qν Q̄µ
)

∂µγνρ = 0,

which can also be incorporated into the hierarchy.
However, there are many alternative possibilities to (74)–(77) which preserve the

hierarchical Sommerfeld structure and lead to a well posed IBVP. In the absence of a
clear geometric approach, we next examine the boundary conditions appropriate to an
isolated system by considering the resulting reflection off a spherical boundary.

B. Application to Maxwell fields with a spherical boundary. In the case of a general
retarded solution for a massless scalar wave equation, we found that a Sommerfeld
boundary condition on a spherical boundary of radius R required data q = O(1/R3).
Homogeneous Sommerfeld data gave rise to an ingoing wave with reflection coefficient
κ = O(1/R2), as in (50). This is the best that can be achieved with a local first order
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homogeneous boundary condition on a spherical boundary. We now investigate the cor-
responding result for the constrained Maxwell equations expressed in terms of a vector
potential Aµ.

In doing so, we associate spherical coordinates (r, x A), x A = (θ, φ), in a standard
way with the Cartesian coordinates xi = (x, y, z), e.g. z = r cos θ . As in (56) we intro-
duce a null tetrad (K µ, Lµ, Qµ) adapted to the boundary, where now K µ∂µ = ∂t + ∂r ,
Lµ∂µ = ∂t − ∂r , and we fix the spin-rotation freedom in the complex null vector
Qµ = (0, Qi ) by setting

Qi = ∂xi

∂x A
Q A, (78)

where

Q A = (

Qθ , Qφ
) = 1

r

(

1,
i

sin θ

)

.

We describe outgoing waves in terms of the retarded time u = t − r .
In order to investigate the vector potential describing the exterior radiation field emit-

ted by an isolated system we introduce a Hertz potential with the symmetry

Hµν = H [µν] +
1

4
ηµν H.

Then the vector potential

Aµ = ∂ν Hµν

satisfies the Lorentz gauge condition and generates a solution of Maxwell’s equations
provided the Hertz potential satisfies the wave equation. The trace H represents pure
gauge freedom.

We consider outgoing dipole waves oriented with the z-axis. Other dipole waves can
be generated by a rotation. Higher multipole waves can be generated by taking spatial
derivatives.

The choice H = Zα∂α
F(u)

r , H [µν] = 0 gives rise to the dipole gauge wave

Aµ =
(

F ′′(u)

r
+

F ′(u)

r2

)

cos θ Kµ +

(
2F ′(u)

r2 +
3F(u)

r3

)

× cos θ∂µr −
(

F ′(u)

r2 +
F(u)

r3

)

Zµ

with components

K µ Aµ =
(

F ′(u)

r2 +
2F(u)

r3

)

cosθ,

Qµ Aµ =
(

F ′(u)

r2 +
F(u)

r3

)

sin θ. (79)

In Appendix V we give some useful formulae underlying the calculation leading to (79)
and the following results.
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The choice Hµν = (T µZν − ZµT ν)
f (u)

r gives rise to a dipole electromagnetic wave

Aµ = −
(

f ′(u)

r
+

f (u)

r2

)

Tµ cos θ − f ′(u)

r
Zµ

with components

AµKµ = f (u)

r2 cosθ,

AµQµ = f ′(u)

r
sin θ. (80)

The choice Hµν = (XµY ν −Y µ Xν)
f (u)

r gives rise to a dipole electromagnetic wave
with the dual polarization

Aµ = −
(

f ′(u)

r
+

f (u)

r2

) (
y Xµ

r
− xYµ

r

)

with components

AµKµ = 0,

Aµ Qµ = i

(
f ′(u)

r
+

f (u)

r2

)

sin θ. (81)

We wish to formulate boundary conditions which generalize the Sommerfeld hier-
archy (53) and (54) to a spherical boundary of radius R in a way which minimizes
reflection. By inspection of (79), (80) and (81), we consider the choice

1

r2 K µ∂µ(r2 K ν Aν) = qK , (82)

1

r
K µ∂µ(r Qν Aν) − Qµ∂µ(K ν Aν) = qQ, (83)

chosen to minimize the asymptotic behavior of the Sommerfeld data. As before, the
constraint determines the remaining boundary condition as part of the Sommerfeld hier-
archy.

For the dipole gauge wave (79),

qK = −2F(u) cos θ

R4 , qQ = 0;
for the dipole electromagnetic wave (80),

qK = 0, qQ = f (u)

R3 sin θ;
and for the dual dipole electromagnetic wave (81)

qK = 0, qQ = −i f (u)

R3 sin θ.

Overall this implies qK = O(1/R4) and qQ = O(1/R3). We have checked that
homogeneous Sommerfeld data leads to reflection coefficients with overall behavior
κ = O(1/R2) in accordance with (51).
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Note that the relations (A1) and (A8) allow us to express (82) and (83) in the form

1

r2 K ν K µ∂µ(r2 Aν) = qK , (84)

Qν K µ∂µ Aν − K ν Qµ∂µ Aν = qQ, (85)

which correspond to (7) and (8) when ∂µ is generalized to the connection ∇a in a curved
space background with K a∇ar = 1. Here (85) is equivalent to the gauge invariant
condition

Qν K µFµν = qQ . (86)

C. Application to linearized gravitational fields with a spherical boundary. The gravi-
tational case is more complicated than the electromagnetic case because the geometry of
the boundary is coupled with the boundary condition. Additionally, there are no gauge
invariant quantities, analogous to (86) in the electromagnetic case, on which to base
first order boundary conditions. We begin with a discussion of how to adapt to a curved
boundary the first order version of the � boundary condition given in Sect. IV A for a
plane boundary.

In the nonlinear treatment of a curved boundary with unit outer normal N a we can
decompose the metric according to

gab = τab + Na Nb,

where τab is the metric intrinsic to the time-like boundary. Let Da denote the covariant
derivative associated with τab. The extrinsic curvature of the boundary is

Nab = τa
c∇c Nb.

We complete an orthonormal basis by setting

τab = −TaTb + Q(a Q̄b)

in terms of a time-like vector T a and complex null vector Qa tangent to the boundary.
We decompose � := K a Qb QcT d Rabcd = �T + �N and the Weyl component

�0 = K a Qb Qc K d Rabcd = �T + �N + 2�T N , where K a = T a + N a and

�T = T a Qb QcT d Rabcd , (87)

�N = N a Qb QcT d Rabcd , (88)

�T N = T a Qb Qc N d Rabcd . (89)

When the vacuum Einstein equations are satisfied the Riemann curvature tensor may be
replaced by the Weyl tensor whose symmetry implies �T N = 0. Therefore, in this case,
� = 0 implies the vanishing of the Newman-Penrose Weyl component �0 = 0.

A short calculation gives the embedding formulae

�N = Qb QcT d(Dd Nbc − Db Ncd)

and

�T = T a Qb QcT d
(

(3) Rabcd − Nac Nbd + Nbc Nad

)

,
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where (3) Rabcd is the intrinsic curvature to the boundary, i.e.

T a Qb QcT d (3) Rabcd = Qb QcT d(Dd Dc − Dc Dd)Tb.

(These are the embedding equations for the Cauchy problem corrected for the space-like
character of the normal to the boundary.)

We now apply these results to a spherical boundary r = R in linearized theory off a
Minkowski background, i.e. gµν = ηµν +εhµν in standard inertial coordinates xµ, where
ε is the linearization parameter. We choose Tµ = ∂µt + O(ε) and Nµ = ∂µr + O(ε). Then
DµTν = O(ε) and Nµν = R−1 Qµν + O(ε), where Qµν = Q(µ Q̄ν) is the metric of a
2-sphere of radius R. We choose the basis to satisfy T µDµTν = 0 and T µ DµQν = 0,
so that

�T = T µQν QρT σ (3) Rµνρσ + O(ε2) = T σ Dσ (Qν Qρ DρTν) + O(ε2)

and

�N = T σ Dσ (Qν Qρ Nρν) − Qρ Dρ(QνT σ Nσν) +
1

2
Qρ(Dρ Qµ)Q̄µQνT σ Nσν

+
1

R
Qν Qρ DρTν + O(ε2).

Thus the boundary conditions

Qν Qρ(Nρν + DρTν) = 0,

QνT ρ Nρν = 0, (90)

imply to linearized accuracy that

� = 1

R
Qν Qρ DρTν . (91)

This gives a geometric formulation of the first differential order version of the require-
ment that � → 0 in the asymptotic limit R → ∞. However, �0 = O(1/R5) in an
asymptotically flat space-time, whereas (91) leads to � = O(1/R2). This is an indi-
cation that the boundary conditions (90) might lead to more reflection than desirable.
Can this be remedied by the introduction of, say, lower order terms in the boundary
conditions? We investigate this question in the context of a well posed IBVP based
upon the harmonic version of the linearized Einstein equations (57) and (58), where
γ µν = −hµν + 1

2ηµνh.
For this purpose, we now consider linearized outgoing waves in the harmonic gauge

which are incident on a spherical boundary. We model our discussion on the Maxwell
case by using the gravitational analogue of a Hertz potential Hµανβ [33,34], which has
the symmetries

Hµανβ = H [µα]νβ = Hµα[νβ] = H νβµα

and satisfies the flat space wave equation

∂σ ∂σ Hµανβ = 0.

Then the densitized metric perturbation

γ µν = ∂α∂β Hµανβ
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satisfies the linearized Einstein equations in the harmonic gauge. Outgoing waves can
be generated from the potential

Hµανβ = f µανβ(u)

r
,

and its spatial derivatives.
The incidence of such an outgoing wave on a boundary r = R leads to reflection,

with the asymptotic falloff of the reflection coefficients depending upon the choice of
boundary conditions. We limit our calculation of reflection coefficients to the case of
outgoing quadrupole waves, which can be obtained from the Hertz potential

Hµανβ = K µανβ f (u)

r
, (92)

where K µανβ is a constant tensor. (All higher multipoles can be constructed by tak-
ing spatial derivatives.) K µανβ has 21 independent components. However, the choice
K µανβ = εµανβ leads to γ µν = 0 so there are only 20 independent waves. These can
be further reduced to pure gauge waves, corresponding to the trace terms in K µανβ , e.g.
K µανβ = ηανηβµ − ηµνηαβ leads to a monopole gauge wave. Linearized gravitational
waves arise from the trace-free part of K µανβ . There are ten independent quadrupole
gravitational waves, corresponding to spherical harmonics with (� = 2,−2 ≤ m ≤ 2) in
the two independent polarization states. The other ten independent potentials comprise
two monopole gauge waves, three dipole gauge waves and five quadrupole gauge waves,
for which the linearized Riemann tensor vanishes. It suffices to consider the following
examples of waves with quadrupole dependence aligned with the z-axis. Other quadru-
pole waves can be obtained by rotation and have similar asymptotic behavior. Reflection
coefficients from the other monopole and dipole gauge waves are smaller and provide
no further useful information. The Hertz potential (92) gives rise to the perturbation

γ µν = K µανβ∂α∂β

f (u)

r
.

Appendix V lists useful formula for the calculations underlying the following results.

1. Quadrupole-monopole gauge wave. The Hertz potential

Hµανβ = (

Zµηαν Zβ + ZνηβµZα − Zµηαβ Zν − ZβηνµZα
) f (u)

r

gives rise to a combination monopole-quadrupole gauge wave with components

Qα Qβγαβ = −2

(
f ′(u)

r2 +
f (u)

r3

)

sin2 θ,

Qα Q̄βγαβ = −2

(
f ′′(u)

r
+

2 f ′(u)

r2 +
2 f (u)

r3

)

cos2 θ,

K α Qβγαβ = − f (u)

r3 sin θ cos θ, (93)

K α K βγαβ = 2

(
f ′(u)

r2 +
2 f (u)

r3

)

cos2 θ,

γ = −2 f ′′(u)

r
cos2 θ + 2

(
f ′(u)

r2 +
f (u)

r3

)

(1 − 3 cos2 θ).
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Here the sin2 θ dependence of the spin-weight 2 component Qα Qβγαβ is a pure 2Y20
spin-weighted spherical harmonic; the sin θ cos θ dependence of the spin-weight 1 com-
ponent K α Qβγαβ is a pure 1Y20 harmonic; and the remaining spin-weight 0 components
are mixtures of Y00 and Y20.

2. Quadrupole gravitational wave. The trace-free Hertz potential

Hµανβ = (

(T µZα − ZµT α)(XνY β − Y ν Xβ)

+ (XµY α − Y µ Xα)(T ν Zβ − ZνT β)
) f (u)

r
(94)

gives rise to a perturbation with γ = 0 and components

Qα Qβγαβ = 2i sin2 θ

(
f ′′(u)

r
+

f ′(u)

r2

)

,

Qα Q̄βγαβ = 0, (95)

K α Qβγαβ = i cos θ sin θ

(
2 f ′(u)

r2 +
3 f (u)

r3

)

,

K α K βγαβ = 0,

which have spin-weighted � = 2, m = 0 dependence.

3. Dual quadrupole gravitational wave The trace-free Hertz potential

Hµανβ = (

(T µZα − ZµT α)(T ν Zβ − ZνT β) − (XµY α − Y µ Xα)(XνY β − Y ν Xβ)

+
1

3
(ηµνηαβ − ηµβηνα)

)
f (u)

r
,

obtained from the dual of (94), gives gives rise to a perturbation with γ = 0 and com-
ponents

Qα Qβγαβ = 2 sin2 θ

(
f ′′(u)

r
+

f ′(u)

r2 +
f (u)

r3

)

,

Qα Q̄βγαβ = 4(cos2 θ − 1

3
)

(
f ′(u)

r2 +
f (u)

r3

)

, (96)

K α Qβγαβ = cos θ sin θ

(
2 f ′(u)

r2 +
f (u)

r3

)

,

K α K βγαβ = 2(cos2 θ − 1

3
)

f (u)

r3 ,

which have spin-weighted � = 2, m = 0 dependence.
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4. Sommerfeld-type boundary conditions. Sommerfeld boundary conditions consistent
with a well posed harmonic IBVP have wide freedom regarding (i) partial derivative
terms consistent with the hierarchical upper triangular structure of the boundary condi-
tion and (ii) lower differential order terms. Here we consider three choices of boundary
conditions and compare their reflection coefficients. One basic idea common to these
choices has already been used in the scalar and Maxwell cases, i.e by inspecting the
asymptotic behavior of the waves (93), (95) and (96) we use the property K α∂α f (u) = 0
to introduce the appropriate powers of r that lead to the smallest asymptotic behavior in
the resulting Sommerfeld data.

Our first choice of boundary conditions is the mathematically simplest choice

1

r2 K α K β K µ∂µ(r2γαβ) = qK K , (97)

1

r
Qα Qβ K µ∂µ(rγαβ) = qQ Q, (98)

1

r
Qα Q̄β K µ∂µ(rγαβ) = qQ Q̄, (99)

1

r2 K α Qβ K µ∂µ(r2γαβ) = qK Q . (100)

This was the choice adopted in numerical tests verifying the stability of the harmonic
IBVP with a plane boundary [14]. The powers of r in (97)-(100) are based upon the
leading asymptotic behavior of the components for the gauge wave (93) and the gravi-
tational waves (95) and (96). These choices lead to boundary data with the asymptotic
behavior

qK K ∼ f (u)

R4 ,

qQ Q ∼ f ′(u)

R3 ,

qQ Q̄ ∼ f ′(u)

R3 ,

qK Q ∼ f (u)

R4 .

Thus the behavior of qQ Q and qQ Q̄ imply that the resulting reflection coefficients have

overall asymptotic dependence no weaker than κ = O(1/R2).
Our second choice, which is partially suggested by the electromagnetic case (83) and

leads to weaker reflection, consists of the modifications

1

r2 K α K β K µ∂µ(r2γαβ) = qK K , (101)

1

r2 K α Qβ K µ∂µ(r2γαβ) = qK Q, (102)

1

r2 Qα Q̄β K µ∂µ(r2γαβ) − γ

r
= qQ Q̄, (103)

Qα Qβ K µ∂µγαβ − Qα K β Qµ∂µγαβ = qQ Q . (104)

Now q.. ∼ f (u)/R4 for both gravitational quadrupole waves. For the gauge waves,
qQ Q̄ ∼ f ′(u)/R3. Using the Regge-Wheeler-Zerilli perturbative formulation and the
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metric reconstruction method described in [35] we have independently checked that
this leads to reflection coefficients κ = O(1/R3) for the gravitational waves and
κ = O(1/R2) for the gauge waves in accord with (51). After replacing γµν = −hµν +
h
2 ηµν , observing that K µ∂µr = 1 and identifying ∂µ with the connection ∇̊a of the
background metric g̊ab, (101)-(104) correspond to the boundary conditions (14)-(17)
discussed in Sect. I C.

Our third choice of boundary conditions, motivated by the first order version of the
�0 boundary condition (77), is

K µ∂µ(r2 K α K βγαβ) = qK K , (105)

K µ∂µ(r Qα Qβγαβ) = qQ Q, (106)

K µ∂µ(r Qα Q̄βγαβ) = qQ Q̄, (107)

1

r2 K µ∂µ(r2 K α Qβγαβ) − 1

2
Qµ∂µK α K βγαβ +

1

2
Q̄µQα Qβ∂µγαβ = qK Q . (108)

However, for the gravitational quadrupole wave (95), this leads to qK Q ∼ f ′′(u)/R2

and so it results in much stronger reflection than the first two choices. Thus, as might
have been anticipated by the discussion following (91), the first order version of the �

boundary condition is not as effective as (104)-(101) in the case of a spherical boundary.

V. Conclusion

We have considered the IBVP for a coupled system of quasilinear wave equations and
established (local in time) well posedness for a large class of boundary conditions. In
particular, this allows for the formulation of a well posed IBVP for quasilinear wave
systems in the presence of constraints on finite domains with artificial, nonreflecting
boundaries. Therefore, we anticipate that our results will have application to a wide
range of problems in computational physics. Furthermore, since our proof is based on
a reduction to a symmetric hyperbolic system with maximal dissipative boundary con-
ditions, it also lays the path for constructing stable finite difference discretizations for
such systems.

Our work has been motivated by the importance of the computation of gravitational
waves from the inspiral and merger of binary black holes, which has enjoyed some
recent success [36–40]. At present, however, none of the simulations of the binary black
hole problem have been based upon a well posed IBVP. The closest example is the har-
monic approach of the Caltech-Cornell group [41–43] which incorporates the freezing
�0 boundary condition in second order form and has been shown to be well posed in
the generalized sense in the high frequency limit [16].

Our results have potential application to improving the binary black hole simulations.
However, many of these simulations are carried out using the BSSN formulation [44,45]
of Einstein’s equations, which differs appreciably from the harmonic formulation con-
sidered here. Although our results constitute a complete analytic treatment of the IBVP
for the harmonic formulation of Einstein’s equations, the extension to the BSSN formu-
lation is not immediately evident. For this purpose, it would be useful to reformulate the
boundary data for the harmonic problem in terms of the intrinsic geometry and extrinsic
curvature of the boundary, as has been done for the initial data for the Cauchy problem.
Such a geometric reformulation remains an outstanding problem.
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Appendix A: Some Useful Formulae

Here we give a short summary of the formulae and conventions underlying the calcula-
tional results of Sects. IV B and IV C. We have

∂α f (u) = − f ′(u)Kα, u = t − r, K α∂α Kβ = 0, (A1)

so that

∂α∂β

f (u)

r
= f ′′(u)

r
Kα Kβ +

f ′(u)

r2 (Kαrβ + rα Kβ) +
2 f (u)

r3 rαrβ

−(
f ′(u)

r
+

f (u)

r2 )rαβ (A2)

and

K µ∂µ∂α∂β

f (u)

r
= − f ′′(u)

r2 Kα Kβ − 2 f ′(u)

r3 (Kαrβ + rα Kβ)

−6 f (u)

r4 rαrβ +

(
2 f ′(u)

r2 +
3 f (u)

r3

)

rαβ, (A3)

where rα := ∂αr and rαβ := ∂α∂βr . The spatial components are

ri = xi

r
= (sin θ cos φ, sin θ sin φ, cosθ), ri j = δi j

r
− xi x j

r3 . (A4)

Our conventions for the polarization dyad give rise to the Cartesian components

(Qx , Qy, Qz) = (cos θ cos φ − i sin φ, cos θ sin φ + i cos φ,− sin θ), (A5)

which satisfy

(Qx )2 + (Qy)2 = − sin2 θ, Qx y

r
− Qy x

r
= −i sin θ,

Qx y

r
+ Qy x

r
= sin θ

(

2 cos θ cos φ sin φ + i(cos2 φ − sin2 φ)
)

(A6)

and

Q jri j = Qi

r
, Q j∂ j Qi = cot θ

r
Qi , Q j∂ j Q̄i = −cot θ

r
Q̄i − 2r j

r
. (A7)

From these follow the necessary commutation relations such as

[r Qµ∂µ, K ν∂ν] = 0. (A8)
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