366 research outputs found

    Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, I-Iipposideros bicolor and I-Iipposideros speoris

    Get PDF
    1. Two hipposiderid bats,H. bicolor andH. speoris, were observed in their natural foraging areas in Madurai (South India). Both species hunt close together near the foliage of trees and bushes but they differ in fine structure of preferred hunting space:H. bicolor hunts within the foliage, especially whenH. speoris is active at the same time, whereasH. speoris never flies in dense vegetation but rather in the more open area (Fig. 1, Table 1). 2. Both species emit CF/FM-sounds containing only one harmonic component in almost all echolocation situations. The CF-parts of CF/FM-sounds are species specific within a band of 127–138 kHz forH. speoris and 147–159 kHz forH. bicolor (Tables 2 and 3). 3. H. speoris additionally uses a complex harmonic sound during obstacle avoidance and during laboratory tests for Doppler shift compensation.H. bicolor consistently emits CF/FM-sounds in these same situations (Fig. 2). 4. Both hipposiderid bats respond to Doppler shifts in the returning echoes by lowering the frequency of the emitted sounds (Fig. 3). However, Doppler compensations are incomplete as the emitted frequencies are decreased by only 55% and 56% (mean values) of the full frequency shifts byH. speoris andH, bicolor, respectively. 5. The differences in Doppler shift compensation, echolocating and hunting behavior suggest thatH. speoris is less specialized on echolocation with CF/FM-sounds thanH. bicolor

    Collicular Responses to the Frequency Modulated Final Part of Echolocation Sounds in Rhinolophusferrum equinum

    Get PDF
    Collicular evoked potentials in Rhinolophus ferrum equinum show very prominent responses to the final frequency modulated part of a acoustic stimulus, simulating the natural echolocation sound

    Hearing Characteristics and Doppler Shift Compensation in South Indian CF-FM Bats

    Get PDF
    1. Echolocation pulses, Doppler shift compensation behaviour under laboratory conditions and frequency response characteristics of hearing were recorded inRhinolophus rouxi, Hipposideros speoris andHipposideros bicolor. 2. The frequencies of the constant frequency portions of the CF-FM pulses lie at about 82.8 kHz forR. rouxi from Mahabaleshwar, at 85.2 kHz forR. rouxi from Mysore. Hipposiderid bats have considerably higher frequencies at 135 kHz inH. speoris and 154.5 kHz inH. bicolor. The mean sound durations were 50 ms, 6.4 ms and 4.7 ms, respectively. 3. R. rouxi compensates for Doppler shifts in a range up to typically 4 kHz of positive Doppler shifts (Fig. 2). The Doppler shift compensation behaviour is almost identical to that ofR. ferrumequinum. 4. H. speoris andH. bicolor do not compensate for Doppler shifts under laboratory conditions. Doppler shifts in the echoes induce emission frequency changes which are not correlated to the presented Doppler shifts (Fig. 3). 5. The frequency response characteristics of hearing ofR. rouxi show characteristic sensitivity changes near the bat's reference frequency as also found inR. ferrumequinum. The threshold differences between the low threshold at the reference frequency and a few hundred Hz below are 40 to 50 dB in awake bats (Fig. 5). 6. Frequency sensitivity changes near the emitted CF-frequency of the bats are less pronounced inH. speoris or almost absent inH. bicolor

    Long-Range Modulation of Chain Motions within the Intrinsically Disordered Transactivation Domain of Tumor Suppressor p53

    Get PDF
    ABSTRACT: The tumor suppressor p53 is a hub protein with a multitude of binding partners, many of which target its intrinsically disordered N-terminal domain, p53-TAD. Partners, such as the N-terminal domain of MDM2, induce formation of local structure and leave the remainder of the domain apparently disordered. We investigated segmental chain motions in p53-TAD using fluorescence quenching of an extrinsic label by tryptophan in combination with fluorescence correlation spectroscopy (PET-FCS). We studied the loop closure kinetics of four consecutive segments within p53-TAD and their response to protein binding and phosphorylation. The kinetics was multiexponential, showing that the conformational ensemble of the domain deviates from random coil, in agreement with previous findings from NMR spectroscopy. Phosphorylations or binding of MDM2 changed the pattern of intrachain kinetics. Unexpectedly, we found that upon binding and phosphorylation chain motions were altered not only within the targeted segments but also in remote regions. Long-range interactions can be induced in an intrinsically disordered domain by partner proteins that induce apparently only local structure or by post-translational modification

    Audition in vampire bats, Desmodus rotundus

    Get PDF
    1. Within the tonotopic organization of the inferior colliculus two frequency ranges are well represented: a frequency range within that of the echolocation signals from 50 to 100 kHz, and a frequency band below that of the echolocation sounds, from 10 to 35 kHz. The frequency range between these two bands, from about 40 to 50 kHz is distinctly underrepresented (Fig. 3B). 2. Units with BFs in the lower frequency range (10–25 kHz) were most sensitive with thresholds of -5 to -11 dB SPL, and units with BFs within the frequency range of the echolocation signals had minimal thresholds around 0 dB SPL (Fig. 1). 3. In the medial part of the rostral inferior colliculus units were encountered which preferentially or exclusively responded to noise stimuli. — Seven neurons were found which were only excited by human breathing noises and not by pure tones, frequency modulated signals or various noise bands. These neurons were considered as a subspeciality of the larger sample of noise-sensitive neurons. — The maximal auditory sensitivity in the frequency range below that of echolocation, and the conspicuous existence of noise and breathing-noise sensitive units in the inferior colliculus are discussed in context with the foraging behavior of vampire bats

    Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism

    Get PDF
    The Hsp90 chaperone is a central node of protein homeostasis activating a large number of diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies define distinct conformational states of the mechanistic core implying structural changes that have not yet been observed in solution. Here, we engineered one-nanometer fluorescence probes based on photo-induced electron transfer into yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement are mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilizes the lid of apo Hsp90, suggesting an early role in the catalytic cycle

    The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy

    Get PDF
    Conformational fluctuations of single-stranded DNA (ssDNA) oligonucleotides were studied in aqueous solution by monitoring contact-induced fluorescence quenching of the oxazine fluorophore MR121 by intrinsic guanosine residues (dG). We applied fluorescence correlation spectroscopy as well as steady-state and time-resolved fluorescence spectroscopy to analyze kinetics of DNA hairpin folding. We first characterized the reporter system by investigating bimolecular quenching interactions between MR121 and guanosine monophosphate in aqueous solution estimating rate constants, efficiency and stability for formation of quenched complexes. We then studied the kinetics of complex formation between MR121 and dG residues site-specifically incorporated in DNA hairpins. To uncover the initial steps of DNA hairpin folding we investigated complex formation in ssDNA carrying one or two complementary base pairs (dC–dG pairs) that could hybridize to form a short stem. Our data show that incorporation of a single dC–dG pair leads to non-exponential decays for opening and closing kinetics and reduces rate constants by one to two orders of magnitude. We found positive activation enthalpies independent of the number of dC–dG pairs. These results imply that the rate limiting step of DNA hairpin folding is not determined by loop dynamics, or by mismatches in the stem, but rather by interactions between stem and loop nucleotides

    Impact‐based forecasting for pluvial floods

    Get PDF
    Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof-of-concept for an impact-based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network-based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio-temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact-based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact-based forecast could be used to disseminate impact-based early warnings
    corecore