83 research outputs found
Feature extraction based on bio-inspired model for robust emotion recognition
Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de IngenierÃa y Ciencias HÃdricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de IngenierÃa y Ciencias HÃdricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de IngenierÃa y Ciencias HÃdricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentin
Reconstructing Speech from Human Auditory Cortex
Direct brain recordings from neurosurgical patients listening to speech reveal that the acoustic speech signals can be reconstructed from neural activity in auditory cortex
NeuroGrid: recording action potentials from the surface of the brain.
Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders
Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed
Neural processing of natural sounds
Natural sounds include animal vocalizations, environmental sounds such as wind, water and fire noises and non-vocal sounds made by animals and humans for communication. These natural sounds have characteristic statistical properties that make them perceptually salient and that drive auditory neurons in optimal regimes for information transmission.Recent advances in statistics and computer sciences have allowed neuro-physiologists to extract the stimulus-response function of complex auditory neurons from responses to natural sounds. These studies have shown a hierarchical processing that leads to the neural detection of progressively more complex natural sound features and have demonstrated the importance of the acoustical and behavioral contexts for the neural responses.High-level auditory neurons have shown to be exquisitely selective for conspecific calls. This fine selectivity could play an important role for species recognition, for vocal learning in songbirds and, in the case of the bats, for the processing of the sounds used in echolocation. Research that investigates how communication sounds are categorized into behaviorally meaningful groups (e.g. call types in animals, words in human speech) remains in its infancy.Animals and humans also excel at separating communication sounds from each other and from background noise. Neurons that detect communication calls in noise have been found but the neural computations involved in sound source separation and natural auditory scene analysis remain overall poorly understood. Thus, future auditory research will have to focus not only on how natural sounds are processed by the auditory system but also on the computations that allow for this processing to occur in natural listening situations.The complexity of the computations needed in the natural hearing task might require a high-dimensional representation provided by ensemble of neurons and the use of natural sounds might be the best solution for understanding the ensemble neural code
Investigation of the Roles of Dynamic Geometry Software in Problem Solving Skills and Conjecture Making
Teaching and learning geometry at secondary level have usually many problems. Researches indicate that use of Dynamic Geometry Software (DGS) can reduce some of these difficulties. The aim of this study is to investigate the effect of DGS on the ability of conjecture making in geometry problem solving at secondary level. One hundred forty-four students and teachers participated at this study. Results have been analyzed using the recorded sessions and clinical interviews. It shows that DGS causes the students to activate more relevant resources, highlight the links between the schemas and improve the control process. It also has positive effects on the students’ belief system
The Use of Spike-Based Representations for Hardware Audition Systems
Humans are able to process speech and other sounds effectively in adverse environments, hearing through noise, reverberation, and interference from other speakers. To date, machines have been unable to match human performance. One profound difference between biological and engineering systems comes at the input stage. In machines, an acoustic signal is typically chopped into short equally spaced segments in time. In biological systems, the cochlea outputs asynchronous spikes that respond in real-time to acoustic inputs. In this paper we describe a spiking cochlea implementation and recent experiments in both speaker and speech recognition that use spikes as input
- …