1,277 research outputs found
Precision Measurement Of The Neutron's Beta Asymmetry Using Ultra-Cold Neutrons
A measurement of A_β, the correlation between the electron momentum and neutron (n) spin (the beta asymmetry) in n beta-decay, together with the n lifetime, provides a method for extracting fundamental parameters for the charged-current weak interaction of the nucleon. In particular when combined with decay measurements, one can extract the V_(ud) element of the CKM matrix, a critical element in CKM unitarity tests. By using a new SD_2 super-thermal source at LANSCE, large fluxes of UCN (ultra-cold neutrons) are expected for the UCNA project. These UCN will be 100% polarized using a 7 T magnetic field, and directed into the β spectrometer. This approach, together with an expected large reduction in backgrounds, will result in an order of magnitude reduction in the critical systematic corrections associated with current n β-asymmetry measurements. This paper will give an overview of the UCNA Aβ measurement as well as an update on the status of the experiment
Genomic relatedness within five common Finnish Campylobacter jejuni pulsed-field gel electrophoresis genotypes studied by amplified fragment length polymorphism analysis, ribotyping and serotyping
Thirty-five Finnish Campylobacter jejuni strains with five SmaI/SacII pulsed-field gel electrophoresis (PFGE) genotypes selected among human and chicken isolates from 1997 and 1998 were used for comparison of their PFGE patterns, amplified fragment length polymorphism (AFLP) patterns, HaeIII ribotypes, and heat-stable (HS) serotypes. The discriminatory power of PFGE, AFLP, and ribotyping with HaeIII were shown to be at the same level for this selected set of strains, and these methods assigned the strains into the same groups. The PFGE and AFLP patterns within a genotype were highly similar, indicating genetic relatedness. The same HS serotypes were distributed among different genotypes, and different serotypes were identified within one genotype. HS serotype 12 was only associated with the combined genotype G1 (PFGE-AFLP-ribotype). These studies using polyphasic genotyping methods suggested that common Finnish C. jejuni genotypes form genetic lineages which colonize both humans and chickens
Ground Level Enhancement in the 2014 January 6 Solar Energetic Particle Event
We present a study of the 2014 January 6 solar energetic particle (SEP)
event, which produced a small ground level enhancement (GLE), making it the
second GLE of this unusual solar cycle 24. This event was primarily observed by
the South Pole neutron monitors (increase of ~2.5%) whereas a few other neutron
monitors recorded smaller increases. The associated coronal mass ejection (CME)
originated behind the western limb and had the speed of 1960 km/s. The height
of the CME at the start of the associated metric type II radio burst, which
indicates the formation of a strong shock, was measured to be 1.61 Rs using a
direct image from STEREO-A/EUVI. The CME height at the time of GLE particle
release (determined using the South Pole neutron monitor data) was directly
measured as 2.96 Rs, from the STEREO-A/COR1 white-light observations. These CME
heights are consistent with those obtained for the GLE71, the only other GLE of
the current cycle as well as cycle-23 GLEs derived using back-extrapolation.
GLE72 is of special interest because it is one of the only two GLEs of cycle
24, one of the two behind-the-limb GLEs and one of the two smallest GLEs of
cycles 23 and 24
Type III Radio Burst Duration and SEP Events
Long-duration (>15 min), low-frequency (25 MeV. The 1-MHz duration of the type III burst (28 rein) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. This study suggests that the type III burst duration may not be a good indicator of an SEP event, consistent with the statistical study of Cliver and Ling (2009, ApJ )
The contributions of snow, fog, and dry deposition to the summer flux of anions and cations at Summit, Greenland
Experiments were performed during the period May–July of 1993 at Summit, Greenland. Aerosol mass size distributions as well as daily average concentrations of several anionic and cationic species were measured. Dry deposition velocities for SO42− were estimated using surrogate surfaces (symmetric airfoils) as well as impactor data. Real-time concentrations of particles greater than 0.5 μm and greater than 0.01 μm were measured. Snow and fog samples from nearly all of the events occurring during the field season were collected. Filter sampler results indicate that SO42− is the dominant aerosol anion species, with Na+, NH4+, and Ca2+being the dominant cations. Impactor results indicate that MSA and SO42− have similar mass size distributions. Furthermore, MSA and SO42− have mass in both the accumulation and coarse modes. A limited number of samples for NH4+ indicate that it exists in the accumulation mode. Na, K, Mg, and Ca exist primarily in the coarse mode. Dry deposition velocities estimated from impactor samples and a theory for dry deposition to snow range from 0.017 cm/s +/− 0.011 cm/s for NH4+ to 0.110 cm/s +/− 0.021 cm/s for Ca. SO42− dry deposition velocity estimates using airfoils are in the range 0.023 cm/s to 0.062 cm/s, as much as 60% greater than values calculated using the airborne size distribution data. The rough agreement between the airfoil and impactor-estimated dry deposition velocities suggests that the airfoils may be used to approximate the dry deposition to the snow surface. Laser particle counter (LPC) results show that particles \u3e 0.5 μm in diameter efficiently serve as nuclei to form fog droplets. Condensation nuclei (CN) measurements indicate that particles \u3c 0.5 μm are not as greatly affected by fog. Furthermore, impactor measurements suggest that from 50% to 80% of the aerosol SO42−serves as nuclei for fog droplets. Snow deposition is the dominant mechanism transporting chemicals to the ice sheet. For NO3−, a species that apparently exists primarily in the gas phase as HNO3(g), 93% of the seasonal inventory (mass of a deposited chemical species per unit area during the season) is due to snow deposition, which suggests efficient scavenging of HNO3(g) by snowflakes. The contribution of snow deposition to the seasonal inventories of aerosols ranges from 45% for MSA to 76% for NH4+. The contribution of fog to the seasonal inventories ranges from 13% for Na+ and Ca2+ to 26% and 32% for SO42− and MSA. The dry deposition contribution to the seasonal inventories of the aerosol species is as low as 5% for NH4+ and as high as 23% for MSA. The seasonal inventory estimations do not take into consideration the spatial variability caused by blowing and drifting snow. Overall, results indicate that snow deposition of chemical species is the dominant flux mechanism during the summer at Summit and that all three deposition processes should be considered when estimating atmospheric concentrations based on ice core chemical signals
CME Interaction with Coronal Holes and Their Interplanetary Consequences
A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs
Major Solar Eruptions and High Energy Particle Events during Solar Cycle 24
We report on a study of all major solar eruptions that occurred on the
front-side of the Sun during the rise to peak phase of cycle 24 (first 62
months) in order to understand the key factors affecting the occurrence of
large solar energetic particle events (SEPs) and the ground levels enhancement
(GLE) events. The eruptions involve major flares with soft X-ray peak flux >/=
5.0 x10-5 Wm-2 (i.e., flare size >/= M5.0) and accompanying coronal mass
ejections (CMEs). The selection criterion was based on the fact that the only
front-side GLE in cycle 24 (GLE 71) had a flare size of M5.1. Only ~37% of the
major eruptions from the western hemisphere resulted in large SEP events.
Almost the same number of large SEP events was produced in weaker eruptions
(flare size <M5.0), suggesting that the soft X-ray flare is not a good
indicator of SEP or GLE events. On the other hand, the CME speed is a better
indicator of SEP and GLE events because it is consistently high supporting the
shock acceleration mechanism for SEPs and GLEs. We found the CME speed,
magnetic connectivity to Earth, and ambient conditions as the main factors that
contribute to the lack of high energy particle events during cycle 24. Several
eruptions poorly connected to Earth (eastern-hemisphere or behind-the-west-limb
events) resulted in very large SEP events detected by the STEREO spacecraft.
Some very fast CMEs, likely to have accelerated particles to GeV energies, did
not result in a GLE event because of poor latitudinal connectivity. The
stringent latitudinal requirement suggests that the highest energy particles
are likely accelerated in the nose part of shocks. There were also
well-connected fast CMEs, which did not seem to have accelerated high energy
particles due to possible unfavorable ambient conditions (high Alfven speed,
overall reduction in acceleration efficiency in cycle 24).Comment: 29 pages, 5 figures, 5 tables, to be published in a special issue of
Earth, Planets, and Spac
Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells
In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by beta-catenin, which has previously been shown to associate with MED12. Importantly, beta-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4.Peer reviewe
- …