18,036 research outputs found

    The Prelude to and Aftermath of the Giant Flare of 2004 December 27: Persistent and Pulsed X-ray Properties of SGR 1806-20 from 1993 to 2005

    Get PDF
    On 2004 December 27, a highly-energetic giant flare was recorded from the magnetar candidate SGR 1806-20. In the months preceding this flare, the persistent X-ray emission from this object began to undergo significant changes. Here, we report on the evolution of key spectral and temporal parameters prior to and following this giant flare. Using the Rossi X-ray Timing Explorer, we track the pulse frequency of SGR 1806-20 and find that the spin-down rate of this SGR varied erratically in the months before and after the flare. Contrary to the giant flare in SGR 1900+14, we find no evidence for a discrete jump in spin frequency at the time of the December 27th flare (|dnu/nu| < 5 X 10^-6). In the months surrounding the flare, we find a strong correlation between pulsed flux and torque consistent with the model for magnetar magnetosphere electrodynamics proposed by Thompson, Lyutikov & Kulkarni (2002). As with the flare in SGR 1900+14, the pulse morphology of SGR 1806-20 changes drastically following the flare. Using the Chandra X-ray Observatory and other publicly available imaging X-ray detector observations, we construct a spectral history of SGR 1806-20 from 1993 to 2005. The usual magnetar persistent emission spectral model of a power-law plus a blackbody provides an excellent fit to the data. We confirm the earlier finding by Mereghetti et al. (2005) of increasing spectral hardness of SGR 1806-20 between 1993 and 2004. Contrary to the direct correlation between torque and spectral hardness proposed by Mereghetti et al., we find evidence for a sudden torque change that triggered a gradual hardening of the energy spectrum on a timescale of years. Interestingly, the spectral hardness, spin-down rate, pulsed, and phase-averaged of SGR 1806-20 all peak months before the flare epoch.Comment: 37 pages, 8 figures, 8 tables. Accepted for publication in ApJ. To appear in the Oct 20 2006 editio

    Preprototype independent air revitalization subsystem

    Get PDF
    The performance and maturity of a preprototype, three-person capacity, automatically controlled and monitored, self-contained independent air revitalization subsystem were evaluated. The subsystem maintains the cabin partial pressure of oxygen at 22 kPa (3.2 psia) and that of carbon dioxide at 400 Pa (3 mm Hg) over a wide range of cabin air relative humidity conditions. Consumption of water vapor by the water vapor electrolysis module also provides partial humidity control of the cabin environment. During operation, the average carbon dioxide removal efficiency at baseline conditions remained constant throughout the test at 84%. The average electrochemical depolarized concentrator cell voltage at the end of the parametric/endurance test was 0.41 V, representing a very slowly decreasing average cell voltage. The average water vapor electrolysis cell voltage increased only at a rate of 20 mu/h from the initial level of 1.67 V to the final level of 1.69 V at conclusion of the testing

    Electrochemical air revitalization system optimization investigation

    Get PDF
    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments

    Giant Spin Seebeck Effect through an Interface Organic Semiconductor

    Full text link
    Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12: YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to enhanced spin mixing conductance across YIG/C60/Pt interfaces. As a result, a 600% increase in the SSE voltage (VLSSE) has been realized in YIG/C60/Pt relative to YIG/Pt. Temperature-dependent SSE voltage measurements on YIG/C60/Pt with varying C60 layer thicknesses also show an exponential increase in VLSSE at low temperatures below 200 K, resembling the temperature evolution of spin diffusion length of C60. Our study emphasizes the important roles of the magnetic anisotropy and the spin diffusion length of the intermediate layer in the SSE in YIG/C60/Pt structures, providing a new pathway for developing novel spin-caloric materials

    Intrinsic Universality in Self-Assembly

    Get PDF
    We show that the Tile Assembly Model exhibits a strong notion of universality where the goal is to give a single tile assembly system that simulates the behavior of any other tile assembly system. We give a tile assembly system that is capable of simulating a very wide class of tile systems, including itself. Specifically, we give a tile set that simulates the assembly of any tile assembly system in a class of systems that we call \emph{locally consistent}: each tile binds with exactly the strength needed to stay attached, and that there are no glue mismatches between tiles in any produced assembly. Our construction is reminiscent of the studies of \emph{intrinsic universality} of cellular automata by Ollinger and others, in the sense that our simulation of a tile system TT by a tile system UU represents each tile in an assembly produced by TT by a c×cc \times c block of tiles in UU, where cc is a constant depending on TT but not on the size of the assembly TT produces (which may in fact be infinite). Also, our construction improves on earlier simulations of tile assembly systems by other tile assembly systems (in particular, those of Soloveichik and Winfree, and of Demaine et al.) in that we simulate the actual process of self-assembly, not just the end result, as in Soloveichik and Winfree's construction, and we do not discriminate against infinite structures. Both previous results simulate only temperature 1 systems, whereas our construction simulates tile assembly systems operating at temperature 2

    Physical Mechanisms for the Variable Spin-down of SGR 1900+14

    Get PDF
    We consider the physical implications of the rapid spindown of Soft Gamma Repeater 1900+14, and of the apparent "braking glitch", \Delta P/P = l x 10^-4, that was concurrent with the Aug. 27th giant flare. A radiation-hydrodynamical outflow associated with the flare could impart the required torque, but only if the dipole magnetic field is stronger than ~ 10^14 G and the outflow lasts longer and/or is more energetic than the observed X-ray flare. A positive period increment is also a natural consequence of a gradual, plastic deformation of the neutron star crust by an intense magnetic field, which forces the neutron superfluid to rotate more slowly than the crust. Sudden unpinning of the neutron vortex lines during the August 27th event would then induce a glitch opposite in sign to those observed in young pulsars, but of a much larger magnitude as a result of the slower rotation. The change in the persistent X-ray lightcurve following the August 27 event is ascribed to continued particle heating in the active region of that outburst. The enhanced X-ray output can be powered by a steady current flowing through the magnetosphere, induced by the twisting motion of the crust. The long term rate of spindown appears to be accelerated with respect to a simple magnetic dipole torque. Accelerated spindown of a seismically-active magnetar will occur when its persistent output of Alfven waves and particles exceeds its spindown luminosity. We suggest that SGRs experience some episodes of relative inactivity, with diminished spindown rates, and that such inactive magnetars are observed as Anomalous X-ray Pulsars (AXPs). The rapid reappearence of persistent X-ray emission following August 27 flare gives evidence against accretion-powered models.Comment: 24 pages, no figure

    Non Local Electron-Phonon Correlations in a Dispersive Holstein Model

    Full text link
    Due to the dispersion of optical phonons, long range electron-phonon correlations renormalize downwards the coupling strength in the Holstein model. We evaluate the size of this effect both in a linear chain and in a square lattice for a time averaged {\it e-ph} potential, where the time variable is introduced according to the Matsubara formalism. Mapping the Holstein Hamiltonian onto the time scale we derive the perturbing source current which appears to be non time retarded. This property permits to disentangle phonon and electron coordinates in the general path integral for an electron coupled to dispersive phonons. While the phonon paths can be integrated out analytically, the electron path integrations have to be done numerically. The equilibrium thermodynamic properties of the model are thus obtained as a function of the electron hopping value and of the phonon spectrum parameters. We derive the {\it e-ph} corrections to the phonon free energy and show that its temperature derivatives do not depend on the {\it e-ph} effective coupling hence, the Holstein phonon heat capacity is strictly harmonic. A significant upturn in the low temperature total heat capacity over TT ratio is attributed to the electron hopping which largely contributes to the action.Comment: Phys.Rev.B (2005

    Technology advancement of the electrochemical CO2 concentrating process

    Get PDF
    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d)

    Electrochemical carbon dioxide concentrator advanced technology tasks

    Get PDF
    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP)
    corecore