5,744 research outputs found

    A parallel VLSI architecture for a digital filter of arbitrary length using Fermat number transforms

    Get PDF
    A parallel architecture for computation of the linear convolution of two sequences of arbitrary lengths using the Fermat number transform (FNT) is described. In particular a pipeline structure is designed to compute a 128-point FNT. In this FNT, only additions and bit rotations are required. A standard barrel shifter circuit is modified so that it performs the required bit rotation operation. The overlap-save method is generalized for the FNT to compute a linear convolution of arbitrary length. A parallel architecture is developed to realize this type of overlap-save method using one FNT and several inverse FNTs of 128 points. The generalized overlap save method alleviates the usual dynamic range limitation in FNTs of long transform lengths. Its architecture is regular, simple, and expandable, and therefore naturally suitable for VLSI implementation

    A Method of Optimal Radio Frequency Assignment for Deep Space Missions

    Get PDF
    A method for determining optimal radio frequency channels for the Deep Space Network is described. Computer automated routines calculate interference-to-signal ratios over a given mission period and provide a quantitative assessment of the channels which could then be assigned to a new mission. This automated procedure reduces the analysis time considerably and effectively improves upon the accuracy of existing channel assignment techniques

    A VLSI pipeline design of a fast prime factor DFT on a finite field

    Get PDF
    A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented

    A role for jasmonates in the release of dormancy by cold stratification in wheat

    Get PDF
    Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.This project was funded by a CSIRO Office of the Chief Executive PDF scheme

    Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy

    Get PDF
    A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.Comment: 10 pages, 4 figure

    A single chip VLSI Reed-Solomon decoder

    Get PDF
    A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous design is replaced by a time domain algorithm. A new architecture that implements such an algorithm permits efficient pipeline processing with minimum circuitry. A systolic array is also developed to perform erasure corrections in the new design. A modified form of Euclid's algorithm is implemented by a new architecture that maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and a significant reduction in silicon area, therefore making it possible to build a pipeline (31,15)RS decoder on a single VLSI chip

    The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Get PDF
    The mathematical principles of tomographic imaging using detected (unscattered) X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field

    Scattered Radiation Emission Imaging: Principles and Applications

    Get PDF
    Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields

    On the V-Line Radon Transform and Its Imaging Applications

    Get PDF
    Radon transforms defined on smooth curves are well known and extensively studied in the literature. In this paper, we consider a Radon transform defined on a discontinuous curve formed by a pair of half-lines forming the vertical letter V. If the classical two-dimensional Radon transform has served as a work horse for tomographic transmission and/or emission imaging, we show that this V-line Radon transform is the backbone of scattered radiation imaging in two dimensions. We establish its analytic inverse formula as well as a corresponding filtered back projection reconstruction procedure. These theoretical results allow the reconstruction of two-dimensional images from Compton scattered radiation collected on a one-dimensional collimated camera. We illustrate the working principles of this imaging modality by presenting numerical simulation results

    Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation

    Full text link
    The phase diagram of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2Cl has been investigated by ultrasonic velocity measurements under helium gas pressure. Different phase transitions were identified trough several elastic anomalies characterized from isobaric and isothermal sweeps. Our data reveal two crossover lines that end on the critical point terminating the first-order Mott transition line. When the critical point is approached along these lines, we observe a dramatic softening of the velocity which is consistent with a diverging compressibility of the electronic degrees of freedom.Comment: 4 pages, 5 figure
    corecore