7,102 research outputs found

    Validity of the Cauchy-Born rule applied to discrete cellular-scale models of biological tissues

    Get PDF
    The development of new models of biological tissues that consider cells in a discrete manner is becoming increasingly popular as an alternative to PDE-based continuum methods, although formal relationships between the discrete and continuum frameworks remain to be established. For crystal mechanics, the discrete-to-continuum bridge is often made by assuming that local atom displacements can be mapped homogeneously from the mesoscale deformation gradient, an assumption known as the Cauchy-Born rule (CBR). Although the CBR does not hold exactly for non-crystalline materials, it may still be used as a first order approximation for analytic calculations of effective stresses or strain energies. In this work, our goal is to investigate numerically the applicability of the CBR to 2-D cellular-scale models by assessing the mechanical behaviour of model biological tissues, including crystalline (honeycomb) and non-crystalline reference states. The numerical procedure consists in precribing an affine deformation on the boundary cells and computing the position of internal cells. The position of internal cells is then compared with the prediction of the CBR and an average deviation is calculated in the strain domain. For centre-based models, we show that the CBR holds exactly when the deformation gradient is relatively small and the reference stress-free configuration is defined by a honeycomb lattice. We show further that the CBR may be used approximately when the reference state is perturbed from the honeycomb configuration. By contrast, for vertex-based models, a similar analysis reveals that the CBR does not provide a good representation of the tissue mechanics, even when the reference configuration is defined by a honeycomb lattice. The paper concludes with a discussion of the implications of these results for concurrent discrete/continuous modelling, adaptation of atom-to-continuum (AtC) techniques to biological tissues and model classification

    Solute transport within porous biofilms: diffusion or dispersion?

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behaviour by controllling nutrient supply, evacuation of waste products and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilmscale. We show that solute transport may be described via two coupled partial differential equations for the averaged concentrations, or telegrapher’s equations. These models are particularly relevant for chemical species, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterised by a second-order tensor whose components depend on: (1) the topology of the channels’ network; (2) the solute’s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion-dominated, this analysis shows that dispersion effects may significantly contribute to transport

    The roles of endolithic fungi in bioerosion and disease in marine ecosystems. I. General concepts

    Get PDF
    Endolithic true fungi and fungus-like microorganisms penetrate calcareous substrates formed by living organisms, cause significant bioerosion and are involved in diseases of many host animals in marine ecosystems. A theoretical interactive model for the ecology of reef-building corals is proposed in this review. This model includes five principle partners that exist in a dynamic equilibrium: polyps of a colonial coelenterate, endosymbiotic zooxanthellae, endolithic algae (that penetrate coral skeletons), endolithic fungi (that attack the endolithic algae, the zooxanthellae and the polyps) and prokaryotic and eukaryotic microorganisms (which live in the coral mucus). Endolithic fungi and fungus-like boring microorganisms are important components of the marine calcium carbonate cycle because they actively contribute to the biodegradation of shells of animals composed of calcium carbonate and calcareous geological substrates

    First in-beam studies of a Resistive-Plate WELL gaseous multiplier

    Full text link
    We present the results of the first in-beam studies of a medium size (10×\times10 cm2^2) Resistive-Plate WELL (RPWELL): a single-sided THGEM coupled to a pad anode through a resistive layer of high bulk resistivity (∌\sim109Ω^9 \Omegacm). The 6.2~mm thick (excluding readout electronics) single-stage detector was studied with 150~GeV muons and pions. Signals were recorded from 1×\times1 cm2^2 square copper pads with APV25-SRS readout electronics. The single-element detector was operated in Ne\(5% CH4\mathrm{CH_{4}}) at a gas gain of a few times 104^4, reaching 99%\% detection efficiency at average pad multiplicity of ∌\sim1.2. Operation at particle fluxes up to ∌\sim104^4 Hz/cm2^2 resulted in ∌\sim23%\% gain drop leading to ∌\sim5%\% efficiency loss. The striking feature was the discharge-free operation, also in intense pion beams. These results pave the way towards robust, efficient large-scale detectors for applications requiring economic solutions at moderate spatial and energy resolutions.Comment: Accepted by JINS

    56 The impact of statin therapy on the efficacy of eplerenone

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106735/1/ehfs80021-9.pd

    353 Eplerenone benefit at 30 days in high‐risk subgroups in the EPHESUS trial

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106771/1/ehfs80218-8.pd
    • 

    corecore