3,571 research outputs found

    ARISTOTELES: A European approach for an Earth gravity field recovery mission

    Get PDF
    Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better

    Application of recent results on the orbital migration of low mass planets: convergence zones

    Full text link
    Previous models of the combined growth and migration of protoplanets needed large ad hoc reduction factors for the type I migration rate as found in the isothermal approximation. In order to eliminate these factors, a simple semi-analytical model is presented that incorporates recent results on the migration of low mass planets in non-isothermal disks. It allows for outward migration. The model is used to conduct planetary populations synthesis calculations. Two points with zero torque are found in the disks. Planets migrate both in- and outward towards these convergence zones. They could be important for accelerating planetary growth by concentrating matter in one point. We also find that the updated type I migration models allow the formation of both close-in low mass planets, but also of giant planets at large semimajor axes. The problem of too rapid migration is significantly mitigated.Comment: 4 pages, 3 figures. Proceedings of the IAU Symposium 276, 2010: The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution, ed. A. Sozzetti, M. G. Lattanzi, and A. P. Bos

    Solute channels of the outer membrane: from bacteria to chloroplasts

    Get PDF
    Chloroplasts, unique organelles of plants, originated from endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. It is assumed that the outer envelope membrane, which delimits the chloroplast from the surrounding cytosol, was thus inherited from its Gram-negative bacterial ancestor. This plastid-specific membrane is thus equipped with elements of prokaryotic and eukaryotic origin. In particular, the membrane-intrinsic outer envelope proteins (OEPs) form solute channels with properties reminiscent of porins and channels in the bacterial outer membrane. OEP channels are characterised by distinct specificities for metabolites and a quite peculiar expression pattern in specialised plant organs and plastids, thus disproving the assumption that the outer envelope is a non-specific molecular sieve. The same is true for the outer membrane of Gram-negative bacteria, which functions as a permeability barrier in addition to the cytoplasmic membrane, and embeds different classes of channel pores. The channels of these prokaryotic prototype proteins, ranging from unspecific porins to specific channels to ligand-gated receptors, are exclusively built of P-barrels. Although most of the OEP channels are formed by P-strands as well, phylogeny based on sequence homology alone is not feasible. Thus, the comparison of structural and functional properties of chloroplast outer envelope and bacterial outer membrane channels is required to pinpoint the ancestral OEP `portrait gallery'

    Use of relevant economic indicators for the evaluation of farming systems in terms of viability, resilience, vulnerability and sustainability: the case of the Lake Alaotra region in Madagascar

    Get PDF
    The WAW initiative (World Agricultures Watch) intends to elaborate a worldwide observatory collecting information on agriculture in different countries and its evolution. Madagascar has been chosen as one of the pilot countries. The geographical area of the study which has been chosen is the lake Alaotra. The study of the notions of vulnerability, resilience, durability and viability has been the main point concerning the choice, the calculation and the analysis of the necessary indicators leading to the elaboration of the observatory. Three different data lines have been chosen: i) The database from the ROR, with annual data from 2005 to 2008 for 500 households ii) The database from the agricultural diagnosis BV-Lac in 2007 (110 farms) and iii) The database from RFR, with 48 farms in 2009 . This paper presents some results with farming systems modeling using the two databases from the BV-lac development project showing the indicators used through the example of a technical change with adoption of conservation agriculture

    Use of relevant economical indicators for the evaluation of farming systems in terms of resilience, vulnerability and sustainability: the case of the Lake Alaotra region in Madagascar

    Get PDF
    The project Observatory for World Agricultures wants to elaborate a worldwide observatory collecting information on agriculture in different countries and its evolution. At the moment five countries have been chosen as countries of reference, Madagascar is one of them. The geographical area of the study which has been chosen is the lake Alaotra. The study of the notions of vulnerability, resilience, durability and viability has been the main point concerning the choice, the calculation and the analysis of the necessary indicators leading to the elaboration of the observatory. Three different data lines have been chosen : i) The database from the ROR, ii) The database from RFR and iii) The database from the agricultural diagnosis Bv-Lac (Durand, Nave & Penot). This paper presents some results with farming systems modeling using the two databases from the BVlac development project showing the indicators used through the example of a technical change with adoption of conservation agriculture

    Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares

    Full text link
    We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (\sim 20%) of the groups show close correlation on time scales << 1s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69±\pm0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission

    Survey on solar X-ray flares and associated coherent radio emissions

    Full text link
    The radio emission during 201 X-ray selected solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zurich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% they are the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.Comment: Solar Physics, in pres

    Graphene microwave transistors on sapphire substrates

    Full text link
    We have developed metal-oxide graphene field-effect transistors (MOGFETs) on sapphire substrates working at microwave frequencies. For monolayers, we obtain a transit frequency up to ~ 80 GHz for a gate length of 200 nm, and a power gain maximum frequency of about ~ 3 GHz for this specific sample. Given the strongly reduced charge noise for nanostructures on sapphire, the high stability and high performance of this material at low temperature, our MOGFETs on sapphire are well suited for a cryogenic broadband low-noise amplifier

    Theory of phase-locking in generalized hybrid Josephson junction arrays

    Full text link
    A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid Josephson junction arrays is extended to a class of generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as well as an inductive component. This class of arrays is of special interest, because the internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we obtain formulas for the flux-dependent frequency including flux-induced switching processes between the in-phase and anti-phase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.

    The Corona of the Young Solar Analog EK Draconis

    Get PDF
    First coronal microwave and new soft X-ray observations of the very active, near-Zero-Age Main-Sequence (ZAMS) dGOe star EK Dra = HD 129333 show that this analog of the young Sun is more luminous in both emissions than most single M-dwarf flare stars. Variations in the 8.4 GHz flux include modulation with the optically determined rotation period of 2.7 days. This result points to a non-uniform filling of the corona with energetic electrons due to an incomplete coverage of the surface with active regions and a source volume that is not concentric with the star. The radio luminosity varying between log L(sub R) = 13.6 and 14.6 (L(sub R) in erg/s/Hz) shows evidence for unpolarized gyrosynchrotron flares, while strongly polarized flares were absent during the observations. This star is the first young, truly solar-like main sequence G star discovered in microwaves. Having just arrived on the main sequence, it conclusively proves that young, solar-like G stars can maintain very high levels of radio emission after their T Tau phase. The X-ray observations were obtained from the ROSAT All-Sky Survey (RASS). The average X-ray luminosity amounts to log L(sub x) = 29.9 (L(sub x) in erg/s). A Raymond-Smith type plasma model fit yields two plasma components at temperatures of 1.9 and 10 MK, with volume emission measures of 1.2 and 2.5 x 10 (exp 52)/cu cm, respectively. The X-ray light curve is significantly variable, with the photon count rate from the cooler plasma being strongly modulated by the rotation period; the emission from the hotter plasma is only weakly variable. Modeling of the source distribution in the stellar corona yields electron densities of the order of 4 x 10(exp 10)/cu cm or higher for the cool plasma component. It indicates that a considerable portion of EK Dra's high X-ray luminosity is due to high-density plasma rather than large emission volume. Parameters for an X-ray flare indicate an electron density of 1.75 x 10(exp 11)/cu cm and a source height of (1-2) x 10(exp 10) cm, compatible with a few times the scale height of the cooler plasma component
    corecore