3,582 research outputs found

    Differential effects of jasmonic acid treatment of Brassica nigra on the attraction of pollinators, parasitoids, and butterflies

    Get PDF
    Herbivore-induced plant defences influence the behaviour of herbivores as well as that of their natural enemies. Jasmonic acid is one of the key hormones involved in both these direct and indirect induced defences. Jasmonic acid treatment of plants changes the composition of defence chemicals in the plants, induces volatile emission, and increases the production of extrafloral nectar. However, few studies have addressed the potential influence of induced defences on flower nectar chemistry and pollinator behaviour. These have shown that herbivore damage can affect pollination rates and plant fitness. Here, we have investigated the effect of jasmonic acid treatment on floral nectar production and the attraction of pollinators, as well as the effect on the behaviour of an herbivore and its natural enemy. The study system consisted of black mustard plants, Brassica nigra L. (Brassicaceae), pollinators of Brassica nigra (i.e., honeybees and syrphid flies), a specialist herbivore, Pieris rapae L. (Lepidoptera: Pieridae), and a parasitoid wasp that uses Pieris larvae as hosts, Cotesia glomerata L. (Hymenoptera: Braconidae). We show that different trophic levels are differentially affected by jasmonic acid-induced changes. While the herbivore prefers control leaves over jasmonic acid-treated leaves for oviposition, the parasitoid C. glomerata is more attracted to jasmonic acid-treated plants than to control plants. We did not observe differences in pollinator preference, the rates of flower visitation by honeybees and syrphid flies were similar for control and jasmonic acid-treated plants. Plants treated with jasmonic acid secreted less nectar than control plants and the concentrations of glucose and fructose tended to be lower than in nectar from control plants. Jasmonic acid treatment resulted in a lower nectar production than actual feeding damage by P. rapae caterpillars

    Automated Driving and its Effect on the Safety Ecosystem: How do Compatibility Issues Affect the Transition Period?

    Get PDF
    AbstractDifferent components of automated vehicles are being made available commercially as we speak. Much research has been conducted into these components and many of these have been studied with respect to their effects on safety, but the transition period from non-automated driving to fully automated vehicles raises safety related issues dealing with mixed traffic situations. More in-depth knowledge should be gained in (the safety of) the behaviour of drivers of unequipped vehicles, enabling automated vehicles to predict and adequately respond to potentially unsafe behaviour, a concept we call backwards compatibility. Also, automated vehicle system design tends to be from an optimal system performance perspective which leads to driving patterns such as driving in the centre of a lane. Other (human) road users however likely exhibit driving behaviour in line with different rationales which allow for suboptimal driving patterns. As of yet, it remains unclear whether these patterns contain indications about the intentions of a driver and if or how other road users anticipate these. This could have two consequences with regard to mixed traffic situations. First of all, other road users might miss important cues from the behaviour of the automated vehicle (what we call forward incompatibility). Secondly, the occupant of an automated vehicle might expect human-like behaviour from the automated vehicle in safety-critical situations, lowering acceptance if this does not meet expectations. The current paper considers these issues and states that we need more insight in how road users use other road users’ behaviour to anticipate safety critical events, especially in the transition period towards fully automated vehicles

    Evaluation of drought propagation in an ensemble mean of large-scale hydrological models

    Get PDF
    Hydrological drought is increasingly studied using large-scale models. It is, however, not sure whether large-scale models reproduce the development of hydrological drought correctly. The pressing question is how well do large-scale models simulate the propagation from meteorological to hydrological drought? To answer this question, we evaluated the simulation of drought propagation in an ensemble mean of ten large-scale models, both land-surface models and global hydrological models, that participated in the model intercomparison project of WATCH (WaterMIP). For a selection of case study areas, we studied drought characteristics (number of droughts, duration, severity), drought propagation features (pooling, attenuation, lag, lengthening), and hydrological drought typology (<i>classical rainfall deficit drought, rain-to-snow-season drought, wet-to-dry-season drought, cold snow season drought, warm snow season drought, composite drought</i>). <br><br> Drought characteristics simulated by large-scale models clearly reflected drought propagation; i.e. drought events became fewer and longer when moving through the hydrological cycle. However, more differentiation was expected between fast and slowly responding systems, with slowly responding systems having fewer and longer droughts in runoff than fast responding systems. This was not found using large-scale models. Drought propagation features were poorly reproduced by the large-scale models, because runoff reacted immediately to precipitation, in all case study areas. This fast reaction to precipitation, even in cold climates in winter and in semi-arid climates in summer, also greatly influenced the hydrological drought typology as identified by the large-scale models. In general, the large-scale models had the correct representation of drought types, but the percentages of occurrence had some important mismatches, e.g. an overestimation of <i>classical rainfall deficit droughts</i>, and an underestimation of <i>wet-to-dry-season droughts</i> and snow-related droughts. Furthermore, almost no <i>composite droughts</i> were simulated for slowly responding areas, while many multi-year drought events were expected in these systems. <br><br> We conclude that most drought propagation processes are reasonably well reproduced by the ensemble mean of large-scale models in contrasting catchments in Europe. Challenges, however, remain in catchments with cold and semi-arid climates and catchments with large storage in aquifers or lakes. This leads to a high uncertainty in hydrological drought simulation at large scales. Improvement of drought simulation in large-scale models should focus on a better representation of hydrological processes that are important for drought development, such as evapotranspiration, snow accumulation and melt, and especially storage. Besides the more explicit inclusion of storage in large-scale models, also parametrisation of storage processes requires attention, for example through a global-scale dataset on aquifer characteristics, improved large-scale datasets on other land characteristics (e.g. soils, land cover), and calibration/evaluation of the models against observations of storage (e.g. in snow, groundwater)

    Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion

    Get PDF
    We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consistent extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical q\sqrt{q}-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.Comment: 5 pages, 5 figures + appendix (3 pages, 1 figure

    Conservation in two-particle self-consistent extensions of dynamical-mean-field-theory

    Full text link
    Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.Comment: 17 pages, 9 figure

    Stellar Populations and Mass-Loss in M15: A Spitzer Detection of Dust in the Intra-Cluster Medium

    Get PDF
    We present Spitzer Space Telescope IRAC and MIPS observations of the galactic globular cluster M15 (NGC 7078), one of the most metal-poor clusters with a [Fe/H] = -2.4. Our Spitzer images reveal a population of dusty red giants near the cluster center, a previously detected planetary nebula (PN) designated K648, and a possible detection of the intra-cluster medium (ICM) arising from mass loss episodes from the evolved stellar population. Our analysis suggests 9 (+/-2) x 10^-4 solar masses of dust is present in the core of M15, and this material has accumulated over a period of approximately 10^6 years, a timescale ten times shorter than the last galactic plane crossing event. We also present Spitzer IRS follow up observations of K648, including the detection of the [NeII] 12.81 micron line, and discuss abundances derived from infrared fine structure lines.Comment: Accepted for publication in AJ. 20 pages, 10 figures, 6 tables. Full resolution versions of figures 1, 5, 7, and 8 are available in a PDF version of this manuscript at http://ir.astro.umn.edu/~mboyer/ms_060906.pd
    • …
    corecore