367 research outputs found

    Two-dimensional, Time-dependent, Multi-group, Multi-angle Radiation Hydrodynamics Test Simulation in the Core-Collapse Supernova Context

    Full text link
    We have developed a time-dependent, multi-energy-group, and multi-angle (Sn_n) Boltzmann transport scheme for radiation hydrodynamics simulations, in one and two spatial dimensions. The implicit transport is coupled to both 1D (spherically-symmetric) and 2D (axially-symmetric) versions of the explicit Newtonian hydrodynamics code VULCAN. The 2D variant, VULCAN/2D, can be operated in general structured or unstructured grids and though the code can address many problems in astrophysics it was constructed specifically to study the core-collapse supernova problem. Furthermore, VULCAN/2D can simulate the radiation/hydrodynamic evolution of differentially rotating bodies. We summarize the equations solved and methods incorporated into the algorithm and present results of a time-dependent 2D test calculation. A more complete description of the algorithm is postponed to another paper. We highlight a 2D test run that follows for 22 milliseconds the immediate post-bounce evolution of a collapsed core. We present the relationship between the anisotropies of the overturning matter field and the distribution of the corresponding flux vectors, as a function of energy group. This is the first 2D multi-group, multi-angle, time-dependent radiation/hydro calculation ever performed in core collapse studies. Though the transport module of the code is not gray and does not use flux limiters (however, there is a flux-limited variant of VULCAN/2D), it still does not include energy redistribution and most velocity-dependent terms.Comment: 19 pages, plus 13 figures in JPEG format. Submitted to the Astrophysical Journa

    Features of the Acoustic Mechanism of Core-Collapse Supernova Explosions

    Get PDF
    In the context of 2D, axisymmetric, multi-group, radiation/hydrodynamic simulations of core-collapse supernovae over the full 180∘^{\circ} domain, we present an exploration of the progenitor dependence of the acoustic mechanism of explosion. All progenitor models we have tested with our Newtonian code explode. We investigate the roles of the Standing-Accretion-Shock-Instability (SASI), the excitation of core g-modes, the generation of core acoustic power, the ejection of matter with r-process potential, the wind-like character of the explosion, and the fundamental anisotropy of the blasts. We find that the breaking of spherical symmetry is central to the supernova phenomenon and the blasts, when top-bottom asymmetric, are self-collimating. We see indications that the initial explosion energies are larger for the more massive progenitors, and smaller for the less massive progenitors, and that the neutrino contribution to the explosion energy may be an increasing function of progenitor mass. The degree of explosion asymmetry we obtain is completely consistent with that inferred from the polarization measurements of Type Ic supernovae. Furthermore, we calculate for the first time the magnitude and sign of the net impulse on the core due to anisotropic neutrino emission and suggest that hydrodynamic and neutrino recoils in the context of our asymmetric explosions afford a natural mechanism for observed pulsar proper motions. [abridged]Comment: Accepted to the Astrophysical Journal, 23 pages in emulateapj format, including 12 figure

    Theoretical Support for the Hydrodynamic Mechanism of Pulsar Kicks

    Get PDF
    The collapse of a massive star's core, followed by a neutrino-driven, asymmetric supernova explosion, can naturally lead to pulsar recoils and neutron star kicks. Here, we present a two-dimensional, radiation-hydrodynamic simulation in which core collapse leads to significant acceleration of a fully-formed, nascent neutron star (NS) via an induced, neutrino-driven explosion. During the explosion, a ~10% anisotropy in the low-mass, high-velocity ejecta lead to recoil of the high-mass neutron star. At the end of our simulation, the NS has achieved a velocity of ~150 km s−1^{-1} and is accelerating at ~350 km s−2^{-2}, but has yet to reach the ballistic regime. The recoil is due almost entirely to hydrodynamical processes, with anisotropic neutrino emission contributing less than 2% to the overall kick magnitude. Since the observed distribution of neutron star kick velocities peaks at ~300-400 km s−1^{-1}, recoil due to anisotropic core-collapse supernovae provides a natural, non-exotic mechanism with which to obtain neutron star kicks.Comment: Replaced with Phys. Rev. D accepted versio

    2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores

    Get PDF
    We perform axisymmetric (2D) multi-angle, multi-group neutrino radiation-hydrodynamic calculations of the postbounce phase of core-collapse supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the long-term postbounce evolution of the cores of one nonrotating and one rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms to ~550 ms after bounce. We present a multi-D analysis of the multi-angle neutrino radiation fields and compare in detail with counterpart simulations carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation to neutrino transport. We find that 2D multi-angle transport is superior in capturing the global and local radiation-field variations associated with rotation-induced and SASI-induced aspherical hydrodynamic configurations. In the rotating model, multi-angle transport predicts much larger asymptotic neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while MGFLD tends to sphericize the radiation fields already in the optically semi-transparent postshock regions. Along the poles, the multi-angle calculation predicts a dramatic enhancement of the neutrino heating by up to a factor of 3, which alters the postbounce evolution and results in greater polar shock radii and an earlier onset of the initially rotationally weakened SASI. In the nonrotating model, differences between multi-angle and MGFLD calculations remain small at early times when the postshock region does not depart significantly from spherical symmetry. At later times, however, the growing SASI leads to large-scale asymmetries and the multi-angle calculation predicts up to 30% higher average integral neutrino energy deposition rates than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in ApJ. A version with high-resolution figures may be obtained from http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd

    Multi-Dimensional Simulations of the Accretion-Induced Collapse of White Dwarfs to Neutron Stars

    Full text link
    We present 2.5D radiation-hydrodynamics simulations of the accretion-induced collapse (AIC) of white dwarfs, starting from 2D rotational equilibrium configurations of a 1.46-Msun and a 1.92-Msun model. Electron capture leads to the collapse to nuclear densities of these cores within a few tens of milliseconds. The shock generated at bounce moves slowly, but steadily, outwards. Within 50-100ms, the stalled shock breaks out of the white dwarf along the poles. The blast is followed by a neutrino-driven wind that develops within the white dwarf, in a cone of ~40deg opening angle about the poles, with a mass loss rate of 5-8 x 10^{-3} Msun/yr. The ejecta have an entropy on the order of 20-50 k_B/baryon, and an electron fraction distribution that is bimodal. By the end of the simulations, at >600ms after bounce, the explosion energy has reached 3-4 x 10^{49}erg and the total ejecta mass has reached a few times 0.001Msun. We estimate the asymptotic explosion energies to be lower than 10^{50}erg, significantly lower than those inferred for standard core collapse. The AIC of white dwarfs thus represents one instance where a neutrino mechanism leads undoubtedly to a successful, albeit weak, explosion. We document in detail the numerous effects of the fast rotation of the progenitors: The neutron stars are aspherical; the ``nu_mu'' and anti-nu_e neutrino luminosities are reduced compared to the nu_e neutrino luminosity; the deleptonized region has a butterfly shape; the neutrino flux and electron fraction depend strongly upon latitude (a la von Zeipel); and a quasi-Keplerian 0.1-0.5-Msun accretion disk is formed.Comment: 25 pages, 19 figures, accpeted to ApJ, high resolution of the paper and movies available at http://hermes.as.arizona.edu/~luc/aic/aic.htm

    Hydrodynamic singularities and clustering in a freely cooling inelastic gas

    Full text link
    We employ hydrodynamic equations to follow the clustering instability of a freely cooling dilute gas of inelastically colliding spheres into a well-developed nonlinear regime. We simplify the problem by dealing with a one-dimensional coarse-grained flow. We observe that at a late stage of the instability the shear stress becomes negligibly small, and the gas flows solely by inertia. As a result the flow formally develops a finite time singularity, as the velocity gradient and the gas density diverge at some location. We argue that flow by inertia represents a generic intermediate asymptotic of unstable free cooling of dilute inelastic gases.Comment: 4 pages, 4 figure

    Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse

    Full text link
    We have carried out an extensive set of two-dimensional, axisymmetric, purely-hydrodynamic calculations of rotational stellar core collapse with a realistic, finite-temperature nuclear equation of state and realistic massive star progenitor models. For each of the total number of 72 different simulations we performed, the gravitational wave signature was extracted via the quadrupole formula in the slow-motion, weak-field approximation. We investigate the consequences of variation in the initial ratio of rotational kinetic energy to gravitational potential energy and in the initial degree of differential rotation. Furthermore, we include in our model suite progenitors from recent evolutionary calculations that take into account the effects of rotation and magnetic torques. For each model, we calculate gravitational radiation wave forms, characteristic wave strain spectra, energy spectra, final rotational profiles, and total radiated energy. In addition, we compare our model signals with the anticipated sensitivities of the 1st- and 2nd-generation LIGO detectors coming on line. We find that most of our models are detectable by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan. 2004). Revised version: Corrected typos and minor mistakes in text and references. Minor additions to the text according to the referee's suggestions, conclusions unchange

    Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multi-group Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae

    Full text link
    Using the 2D multi-group, flux-limited diffusion version of the code VULCAN/2D, that also incorporates rotation, we have calculated the collapse, bounce, shock formation, and early post-bounce evolutionary phases of a core-collapse supernova for a variety of initial rotation rates. This is the first series of such multi-group calculations undertaken in supernova theory with fully multi-D tools. We find that though rotation generates pole-to-equator angular anisotropies in the neutrino radiation fields, the magnitude of the asymmetries is not as large as previously estimated. Moreover, we find that the radiation field is always more spherically symmetric than the matter distribution, with its plumes and convective eddies. We present the dependence of the angular anisotropy of the neutrino fields on neutrino species, neutrino energy, and initial rotation rate. Only for our most rapidly rotating model do we start to see qualitatively different hydrodynamics, but for the lower rates consistent with the pre-collapse rotational profiles derived in the literature the anisotropies, though interesting, are modest. This does not mean that rotation does not play a key role in supernova dynamics. The decrease in the effective gravity due to the centripetal effect can be quite important. Rather, it means that when a realistic mapping between initial and final rotational profiles and 2D multi-group radiation-hydrodynamics are incorporated into collapse simulations the anisotropy of the radiation fields may be only a secondary, not a pivotal factor, in the supernova mechanism.Comment: Includes 11 low-resolution color figures, accepted to the Astrophysical Journal (June 10, 2005; V. 626); high-resolution figures and movies available from the authors upon reques

    Model Flames in the Boussinesq Limit: The Effects of Feedback

    Get PDF
    We have studied the fully nonlinear behavior of pre-mixed flames in a gravitationally stratified medium, subject to the Boussinesq approximation. Key results include the establishment of criterion for when such flames propagate as simple planar flames; elucidation of scaling laws for the effective flame speed; and a study of the stability properties of these flames. The simplicity of some of our scalings results suggests that analytical work may further advance our understandings of buoyant flames.Comment: 11 pages, 14 figures, RevTex, gzipped tar fil

    COMPTEL upper limits for the 56Co gamma-ray emission from SN1998bu

    Full text link
    Supernova 1998bu in the galaxy M96 was observed by COMPTEL for a total of 88 days starting 17 days after the explosion. We searched for a signal in the 847 keV and 1238 keV lines of radioactive 56Co from this type Ia supernova. Using several different analysis methods, we did not detect SN1998bu. Our measurements should have been sensitive enough to detect 60Co gamma-rays as predicted from supernova models. Our 2-sigma flux limit is 2.3 10^{-5} photons cm^{-2} s^{-1}; this would correspond to 0.35 solar mass of ejected 56Ni, if SN1998bu were at a distance of 11.3 Mpc and transparent to MeV gamma rays for the period of our measurements. We discuss our measurements in the context of common supernova models, and conclude disfavoring a supernova event with large mixing and major parts of the freshly-generated radioactivity in outer layers.Comment: 8 pages, 6 EPS-figures, Latex2e, aa.cls needed, accepted for publication in A&
    • 

    corecore