2,883 research outputs found

    The Primary Science Capital Teaching Approach: teacher handbook

    Get PDF

    Prospective randomised comparison of femoral transfix versus endobutton with constant tibial fixation in hamstring tendon ACL reconstruction: a preliminary study

    Get PDF
    Background: The purpose of this study is to evaluate clinico radiological outcome of hamstring tendon ACL reconstruction using femoral Transfixation and Endobutton with identical Tibial fixation.Methods: A Prospective randomized clinical outcome study was done from January 2002 to June 2008, a total of 132 patients with quadruple hamstring ACL reconstruction using a femoral fixation group A Endobutton (n=68; median age=27.4) and group B with Transfix (n=64; median age=26.1) and identical Tibial fixation with Biointerference screw and bone staple were studied. Patients in each group had a clinical and radiological assessment at <3, 3-12, 12-24 and >24 months after surgery.Results: The mean Lysholm Knee score has improved significantly with time within these groups but no difference on comparison between groups. Ninety percent of all patients had functionally normal or near normal International Knee Documentation Committee (IKDC) knee ligament ratings. IKDC Subjective Knee evaluation mean score has progressively increased significantly from pre op values of 37.58 and 36.55 to about 74.51 and 75.85 in group A and group B respectively. The tibial and femoral tunnels also showed widening of about 9.64% and 7.79% in group A as compared to 7.71% and 7.27% in group B at >24 months follow-up, which was statistically insignificant. MRI done in limited patients showed good graft incorporation in both groups.Conclusions: So keeping the tibial graft fixation constant, the two different femoral fixation methods, Endobutton and transfixation have not influenced in the clinical outcome in this short term preliminary study. But long term follow up of these is necessary to evaluate the significance of tunnel widening and its final outcome

    Scattering states of coupled valence-band holes in point defect potential derived from variable phase theory

    Full text link
    In this article we present a method to compute the scattering states of holes in spherical bands in the strong spin-orbit coupling regime. More precisely, we calculate scattering phase shifts and amplitudes of holes induced by defects in a semiconductor crystal. We follow a previous work done on this topic by Ralph [H. I. Ralph, Philips Res. Rept. 32 160 (1977)] to account for the p-wave nature and the coupling of valence band states. We extend Ralph's analysis to incorporate finite-range potentials in the scattering problem. We find that the variable phase method provides a very convenient framework for our purposes and show in detail how scattering amplitudes and phase shifts are obtained. The Green's matrix of the Schroedinger equation, the Lippmann-Schwinger equation and the Born approximation are also discussed. Examples are provided to illustrate our calculations with Yukawa type potentials.Comment: 16 pages and 9 figure

    General energy bounds for systems of bosons with soft cores

    Full text link
    We study a bound system of N identical bosons interacting by model pair potentials of the form V(r) = A sgn(p)r^p + B/r^2, A > 0, B >= 0. By using a variational trial function and the `equivalent 2-body method', we find explicit upper and lower bound formulas for the N-particle ground-state energy in arbitrary spatial dimensions d > 2 for the two cases p = 2 and p = -1. It is demonstrated that the upper bound can be systematically improved with the aid of a special large-N limit in collective field theory

    Neural Indices of Vowel Discrimination in Monolingual and Bilingual Infants and Children

    Full text link
    Objectives: To examine maturation of neural discriminative responses to an English vowel contrast from infancy to 4 years of age and to determine how biological factors (age and sex) and an experiential factor (amount of Spanish versus English input) modulate neural discrimination of speech. Design: Event-related potential (ERP) mismatch responses (MMRs) were used as indices of discrimination of the American English vowels [ε] versus [I] in infants and children between 3 months and 47 months of age. A total of 168 longitudinal and cross-sectional data sets were collected from 98 children (Bilingual Spanish–English: 47 male and 31 female sessions; Monolingual English: 48 male and 42 female sessions). Language exposure and other language measures were collected. ERP responses were examined in an early time window (160 to 360 msec, early MMR [eMMR]) and late time window (400 to 600 msec, late MMR). Results: The eMMR became more negative with increasing age. Language experience and sex also influenced the amplitude of the eMMR. Specifically, bilingual children, especially bilingual females, showed more negative eMMR compared with monolingual children and with males. However, the subset of bilingual children with more exposure to English than Spanish compared with those with more exposure to Spanish than English (as reported by caretakers) showed similar amplitude of the eMMR to their monolingual peers. Age was the only factor that influenced the amplitude of the late MMR. More negative late MMR was observed in older children with no difference found between bilingual and monolingual groups. Conclusions: Consistent with previous studies, our findings revealed that biological factors (age and sex) and language experience modulated the amplitude of the eMMR in young children. The early negative MMR is likely to be the mismatch negativity found in older children and adults. In contrast, the late MMR amplitude was influenced only by age and may be equivalent to the Nc in infants and to the late negativity observed in some auditory passive oddball designs

    Coherent oscillations of electrons in tunnel-coupled wells under ultrafast intersubband excitation

    Full text link
    Ultrafast intersubband excitation of electrons in tunnell-coupled wells is studied depending on the structure parameters, the duration of the infrared pump and the detuning frequency. The temporal dependencies of the photoinduced concentration and dipole moment are obtained for two cases of transitions: from the single ground state to the tunnel-coupled excited states and from the tunnel-coupled states to the single excited state. The peculiarities of dephasing and population relaxation processes are also taken into account. The nonlinear regime of the response is also considered when the splitting energy between the tunnel-coupled levels is renormalized by the photoexcited electron concentration. The dependencies of the period and the amplitude of oscillations on the excitation pulse are presented with a description of the nonlinear oscillations damping.Comment: 8 pages, 12 figure

    The Polyakov action on the supertorus

    Get PDF
    A consistent method for obtaining a well-defined Polyakov action on the supertorus is presented. This method uses the covariantization of derivative operators and enables us to construct a Polyakov action which is globally defined.Comment: 15 pages LaTe

    Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle

    Full text link
    In this paper, we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphism group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for the fractional Sobolev norm HsH^{s} for s≥1/2s \ge 1/2), the corresponding initial value problem is well-posed in the smooth category and that the Riemannian exponential map is a smooth local diffeomorphism. Paradigmatic examples of our general setting cover, besides all traditional Euler equations induced by a local inertia operator, the Constantin-Lax-Majda equation, and the Euler-Weil-Petersson equation.Comment: 40 pages. Corrected typos and improved redactio

    A basis for variational calculations in d dimensions

    Full text link
    In this paper we derive expressions for matrix elements (\phi_i,H\phi_j) for the Hamiltonian H=-\Delta+\sum_q a(q)r^q in d > 1 dimensions. The basis functions in each angular momentum subspace are of the form phi_i(r)=r^{i+1+(t-d)/2}e^{-r^p/2}, i >= 0, p > 0, t > 0. The matrix elements are given in terms of the Gamma function for all d. The significance of the parameters t and p and scale s are discussed. Applications to a variety of potentials are presented, including potentials with singular repulsive terms of the form b/r^a, a,b > 0, perturbed Coulomb potentials -D/r + B r + Ar^2, and potentials with weak repulsive terms, such as -g r^2 + r^4, g > 0.Comment: 22 page

    Connecting Mission Profiles and Radiation Vulnerability Assessment

    Get PDF
    Radiation vulnerability assessment early in spacecraft development is cheaper and faster than in late development phases. RGENTIC and SEAM are two software platforms that can be coupled to provide this type of early assessment. Specifically, RGENTIC is a tool that outputs descriptions of radiation risks based on a selected mission environment and the system’s electronic part portfolio, while SEAM models how radiation-induced faults in electronic parts propagate through a system. In this work, we propose a spacecraft evaluation flow where RGENTIC’s outputs, which are radiation vulnerabilities of electronic parts for a given mission, become inputs to SEAM, resulting in an automatic part-type template palette presented to users so that they can easily begin modeling the occurrence and propagation of radiation-induced faults in their spacecraft. In this context, fault propagation modeling shows how radiation effects impact the spacecraft’s electronics. The interface between these platforms can be streamlined through the creation of a SEAM global part-type library with templates based on radiation effects in part-type families such as sensors, processors, voltage regulators, and so forth. Several of the part-types defined in RGENTIC have been integrated into SEAM templates. Ultimately, all 66+ part-types from the RGENTIC look-up table will be included in the SEAM global part library. Once accomplished, the part templates can be used to populate each project-specific part library in SEAM, ensuring all RGENTIC’s part-types are represented, and the radiation effects are consistent between the two. The harmonization process between RGENTIC and SEAM begins as follows: designers input a detailed knowledge of their system and mission into RGENTIC, which then outputs a generic part-type list that associates each part-type with potential radiation concerns. The list is then downloaded in a SEAM-readable file, which SEAM uses to populate the initially blank project with the part templates that correspond to RGENTIC’s output. The final product is a system fault model using a project-specific radiation effect part library. The radiation effects considered in the part library are associated with three categories of radiation-environment issues: single event effects (SEE), total ionizing dose (TID), and displacement damage dose (DDD). An example part-type is the discrete LED, which has been functionally decomposed into input power and output light. It has a single possible radiation-induced fault that is associated with DDD, which causes degraded brightness and is observed on the output. Overall, designers will benefit from a coordination of these two tools because it simplifies the initial definition of the project in SEAM. This is especially the case for new users, since the necessary radiation models for their parts are available before modeling commences. Furthermore, starting from a duplicate of an existing project decreases the amount of time and effort required to develop project-specific models. Incorporating RGENTIC’s table of part-types resolves these issues and provides a streamlined process for creating system radiation fault models. Consequently, spacecraft designers can identify radiation problems early in the design cycle and fix them with lower cost and less effort than in later design stages
    • …
    corecore