126 research outputs found

    Surface Instability in Windblown Sand

    Full text link
    We investigate the formation of ripples on the surface of windblown sand based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71, 197 (1993)], which contains the processes of saltation and grain relaxation. We carry out a nonlinear analysis to determine the propagation speed of the restabilized ripple patterns, and the amplitudes and phases of their first, second, and third harmonics. The agreement between the theory and our numerical simulations is excellent near the onset of instability. We also determine the Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure

    Structural design studies of a supersonic cruise arrow wing configuration

    Get PDF
    Structural member cross sections were sized with a system of integrated computer programs to satisfy strength and flutter design requirements for several variants of the arrow wing supersonic cruise vehicle. The resulting structural weights provide a measure of the structural efficiency of the planform geometry, structural layout, type of construction, and type of material including composites. The material distribution was determined for a baseline metallic structure and the results indicate that an approximate fatigue constraint has an important effect on the structural weight required for strength but, in all cases, additional material had to be added to satisfy flutter requirements with lighter mass engines with minimum fuel onboard. The use of composite materials on the baseline configuration was explored and indicated increased structural efficiency. In the strength sizing, the all-composite construction provided a lower weight design than the hybrid construction which contained composites only in the wing cover skins. Subsequent flutter analyses indicated a corresponding lower flutter speed

    Hyperfine interaction mediated exciton spin relaxation in (In,Ga)As quantum dots

    Full text link
    The population dynamics of dark and bright excitons in (In,Ga)As/GaAs quantum dots is studied by two-color pump-probe spectroscopy in an external magnetic field. With the field applied in Faraday geometry and at T<20 K, the dark excitons decay on a ten nanoseconds time scale unless the magnetic field induces a resonance with a bright exciton state. At these crossings their effective lifetime is drastically shortened due to spin flips of either electron or hole by which the dark excitons are converted into bright ones. Due to the quasielastic character we attribute the origin of these flips to the hyperfine interaction with the lattice nuclei. We compare the exciton spin relaxation times in the two resonances and find that the spin flip involving an electron is approximately 25 times faster than the one of the hole. A temperature increase leads to a considerable, nonmonotonic decrease of the dark exciton lifetime. Here phonon-mediated spin flips due to the spin-orbit interaction gradually become more important.Comment: expanded version (cf. sections III.C and III.D

    Correlated Photon-Pair Emission from a Charged Single Quantum Dot

    Full text link
    The optical creation and recombination of charged biexciton and trion complexes in an (In,Ga)As/GaAs quantum dot is investigated by micro-photoluminescence spectroscopy. Photon cross-correlation measurements demonstrate the temporally correlated decay of charged biexciton and trion states. Our calculations provide strong evidence for radiative decay from the excited trion state which allows for a deeper insight into the spin configurations and their dynamics in these systems.Comment: 5 pages, 3 figures, submitted for publicatio

    Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots

    Full text link
    The ground state carrier dynamics in self-assembled (In,Ga)As/GaAs quantum dots has been studied using time-resolved photoluminescence and transmission. By varying the dot design with respect to confinement and doping, the dynamics is shown to follow in general a non-exponential decay. Only for specific conditions in regard to optical excitation and carrier population, for example, the decay can be well described by a mono-exponential form. For resonant excitation of the ground state transition a strong shortening of the luminescence decay time is observed as compared to the non-resonant case. The results are consistent with a microscopic theory that accounts for deviations from a simple two-level picture.Comment: 8 pages, 7 figure

    Noise and dynamical pattern selection

    Full text link
    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let

    Scaling and Density of Lee-Yang Zeroes in the Four Dimensional Ising Model

    Get PDF
    The scaling behaviour of the edge of the Lee--Yang zeroes in the four dimensional Ising model is analyzed. This model is believed to belong to the same universality class as the Ï•44\phi^4_4 model which plays a central role in relativistic quantum field theory. While in the thermodynamic limit the scaling of the Yang--Lee edge is not modified by multiplicative logarithmic corrections, such corrections are manifest in the corresponding finite--size formulae. The asymptotic form for the density of zeroes which recovers the scaling behaviour of the susceptibility and the specific heat in the thermodynamic limit is found to exhibit logarithmic corrections too. The density of zeroes for a finite--size system is examined both analytically and numerically.Comment: 17 pages (4 figures), LaTeX + POSTSCRIPT-file, preprint UNIGRAZ-UTP 20-11-9

    Traffic Equations and Granular Convection

    Full text link
    We investigate both numerically and analytically the convective instability of granular materials by two dimensional traffic equations. In the absence of vibrations the traffic equations assume two distinctive classes of fixed bed solutions with either a spatially uniform or nonuniform density profile. The former one exists only when the function V(\rho) that monitors the relaxation of grains assumes a cut off at the closed packed density, \rho_c, with V(\rho_c)=0, while the latter one exists for any form of V. Since there is little difference between the uniform and nonuniform solution deep inside the bed, the convective instability of the bulk may be studied by focusing on the stability of the uniform solution. In the presence of vibrations, we find that the uniform solution bifurcates into a bouncing solution, which then undergoes a supercritical bifurcation to the convective instability. We determine the onset of convection as a function of control parameters and confirm this picture by solving the traffic equations numerically, which reveals bouncing solutions, two convective rolls, and four convective rolls. Further, convective patterns change as the aspect ratio changes: in a vertically long container, the rolls move toward the surface, and in a horizontally long container, the rolls move toward the walls. We compare these results with those reported previously with a different continuum model by Hayakawa, Yue and Hong[Phys. Rev. Lett. 75,2328, 1995]. Finally, we also present a derivation of the traffic equations from Enskoq equation.Comment: 34 pages, 10 figure

    Physical inactivity is associated with chronic musculoskeletal complaints 11 years later: results from the Nord-Trøndelag Health Study

    Get PDF
    Background Physical inactivity is associated with several diseases, but studies evaluating the association between chronic musculoskeletal complaints (MSCs) and physical exercise have shown conflicting results. The aim of this large-scale prospective population-based study was to investigate the association between self-reported physical exercise at baseline and the prevalence of chronic musculoskeletal complaints (MSCs) 11 years later. Methods The results are based upon two consecutive public health studies conducted within the county of Nord-Trøndelag, Norway (The HUNT studies). A total of 39,520 (83%) out of 47,556 adults who participated in HUNT 1 and HUNT 2 responded to questions about physical exercise at baseline in 1984–86, and to questions about musculoskeletal complaints 11 years later (1995–97). Chronic MSCs was defined as MSCs ≥ 3 months during the past year, and chronic widespread MSCs such as pain ≥ 15 days during the last month from the axial region, above the waist, and below the waist. Associations were assessed using multiple logistic regression, estimating prevalence odds ratio (OR) with 95% confidence intervals (CIs). All the final analyses were adjusted for age, gender, body mass index, smoking and education level. Results At follow-up 20,223 (51%) reported chronic MSCs, and among these 2,318 (5.9%) reported chronic widespread MSCs. Individuals who exercised at baseline were less likely to report chronic MSCs 11 years later (OR 0.91, 95% CI 0.85–0.97) than inactive persons. Among individuals who exercised more than three times per week, chronic widespread MSCs were 28% less common (OR 0.72, 95% CI 0.59–0.88) compared to inactive individuals. Conclusion In this large-scale population-based study, physical exercise was associated with lower prevalence of chronic MSCs, in particular chronic widespread MSCs. Future studies should try to clarify whether chronic MSCs are a cause or a consequence of inactivity
    • …
    corecore