16 research outputs found

    The speciation and genotyping of Cronobacter isolates from hospitalised patients

    Get PDF
    The World Health Organization (WHO) has recognised all Cronobacter species as human pathogens. Among premature neonates and immunocompromised infants, these infections can be life-threatening, with clinical presentations of septicaemia, meningitis and necrotising enterocolitis. The neurological sequelae can be permanent and the mortality rate as high as 40 – 80 %. Despite the highlighted issues of neonatal infections, the majority of Cronobacter infections are in the elderly population suffering from serious underlying disease or malignancy and include wound and urinary tract infections, osteomyelitis, bacteraemia and septicaemia. However, no age profiling studies have speciated or genotyped the Cronobacter isolates. A clinical collection of 51 Cronobacter strains from two hospitals were speciated and genotyped using 7-loci multilocus sequence typing (MLST), rpoB gene sequence analysis, O-antigen typing and pulsed- field gel electrophoresis (PFGE). The isolates were predominated by C. sakazakii sequence type 4 (63 %, 32/51) and C. malonaticus sequence type 7 (33 %, 17/51). These had been isolated from throat and sputum samples of all age groups, as well as recal and faecal swabs. There was no apparent relatedness between the age of the patient and the Cronobacter species isolated. Despite the high clonality of Cronobacter , PFGE profiles differentiated strains across the sequence types into 15 pulsotypes. There was almost complete agreement between O-antigen typing and rpoB gene sequence analysis and MLST profiling. This study shows the value of applying MLST to bacterial population studies with strains from two patient cohorts, combined with PFGE for further discrimination of strains

    Exploring the effects of topoisomerase II inhibitor XK469 on anthracycline cardiotoxicity and DNA damage

    Get PDF
    Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIβ has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIβ selective agent XK469 as a potential cardioprotective and designed several new analogues. In our experiments, XK469 inhibited both topoisomerase isoforms (α and β) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential

    First record of Rhabdoceras suessi (Ammonoidea, Late Triassic) from the Transylvanian Triassic Series of the Eastern Carpathians (Romania) and a review of its biochronology, paleobiogeography and paleoecology

    Get PDF
    Abstract The occurrence of the heteromorphic ammonoid Rhabdoceras suessi Hauer, 1860, is recorded for the first time in the Upper Triassic limestone of the Timon-Ciungi olistolith in the Rarău Syncline, Eastern Carpathians. A single specimen of Rhabdoceras suessi co-occurs with Monotis (Monotis) salinaria that constrains its occurrence here to the Upper Norian (Sevatian 1). It is the only known heteromorphic ammonoid in the Upper Triassic of the Romanian Carpathians. Rhabdoceras suessi is a cosmopolitan species widely recorded in low and mid-paleolatitude faunas. It ranges from the Late Norian to the Rhaetian and is suitable for high-resolution worldwide correlations only when it co-occurs with shorter-ranging choristoceratids, monotid bivalves, or the hydrozoan Heterastridium. Formerly considered as the index fossil for the Upper Norian (Sevatian) Suessi Zone, by the latest 1970s this species lost its key biochronologic status among Late Triassic ammonoids, and it generated a controversy in the 1980s concerning the status of the Rhaetian stage. New stratigraphic data from North America and Europe in the subsequent decades resulted in a revised ammonoid biostratigraphy for the uppermost Triassic, the Rhaetian being reinstalled as the topmost stage in the current standard timescale of the Triassic. The geographic distribution of Rhabdoceras is compiled from published worldwide records, and its paleobiogeography and paleoecology are discussed

    First record of Rhabdoceras suessi

    Full text link
    corecore