505 research outputs found

    Fabrication of high quality ferromagnetic Josephson junctions

    Full text link
    We present ferromagnetic Nb/Al2O3/Ni60Cu40/Nb Josephson junctions (SIFS) with an ultrathin Al2O3 tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with jc spreads less than 2% was obtained.Comment: 5 pages, 6 figures; VORTEX IV conference contribution; Submitted to Physica

    Strong enhancement of direct magnetoelectric effect in strained ferroelectric-ferromagnetic thin-film heterostructures

    Full text link
    The direct magnetoelectric (ME) effect resulting from the polarization changes induced in a ferroelectric film by the application of a magnetic field to a ferromagnetic substrate is described using the nonlinear thermodynamic theory. It is shown that the ME response strongly depends on the initial strain state of the film. The ME polarization coefficient of the heterostructures involving Terfenol-D substrates and compressively strained lead zirconate titanate (PZT) films, which stabilize in the out-of-plane polarization state, is found to be comparable to that of bulk PZT/Terfenol-D laminate composites. At the same time, the ME voltage coefficient reaches a giant value of 50 V/(cm Oe), which greatly exceeds the maximum observed static ME coefficients of bulk composites. This remarkable feature is explained by a favorable combination of considerable strain sensitivity of polarization and a low electric permittivity in compressively strained PZT films. The theory also predicts a further dramatic increase of ME coefficients at the strain-induced transitions between different ferroelectric phases.Comment: 7 pages, 3 figure

    Memory cell based on a φ\varphi Josephson junction

    Full text link
    The φ\varphi Josephson junction has a doubly degenerate ground state with the Josephson phases ±φ\pm\varphi. We demonstrate the use of such a φ\varphi Josephson junction as a memory cell (classical bit), where writing is done by applying a magnetic field and reading by applying a bias current. In the "store" state, the junction does not require any bias or magnetic field, but just needs to stay cooled for permanent storage of the logical bit. Straightforward integration with Rapid Single Flux Quantum logic is possible.Comment: to be published in AP

    Observation of Josephson coupling through an interlayer of antiferromagnetically ordered chromium

    Get PDF
    The supercurrent transport in metallic Josephson tunnel junctions with an additional interlayer made up by chromium, being an itinerant antiferromagnet, was studied. Uniform Josephson coupling was observed as a function of the magnetic field. The supercurrent shows a weak dependence on the interlayer thickness for thin chromium layers and decays exponentially for thicker films. The diffusion constant and the coherence length in the antiferromagnet were estimated. The antiferromagnetic state of the barrier was indirectly verified using reference samples. Our results are compared to macroscopic and microscopic models.Comment: Phys. Rev. B (2009), in prin

    Phase retrapping in aφJosephson junction: onset of the butterfly effect

    Get PDF
    We investigate experimentally the retrapping of the phase in a φ Josephson junction upon return of the junction to the zero-voltage state. Since the Josephson energy profile U 0 ( ψ ) in φ JJ is a 2 π periodic double-well potential with minima at ψ = ± φ mod 2 π , the question is at which of the two minima − φ or + φ the phase will be trapped upon return from a finite voltage state during quasistatic decrease of the bias current (tilt of the potential). By measuring the relative population of two peaks in escape histograms, we determine the probability of phase trapping in the ± φ wells for different temperatures. Our experimental results agree qualitatively with theoretical predictions. In particular, we observe an onset of the butterfly effect with an oscillating probability of trapping. Unexpectedly, this probability saturates at a value different from 50% at low temperatures

    Low-T_c Josephson junctions with tailored barrier

    Full text link
    Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb based superconductor-insulator-ferromagnet-superconductor (SIFS) Josephson tunnel junctions with a thickness step in the metallic ferromagnetic \Ni_{0.6}\Cu_{0.4} interlayer were fabricated. The step was defined by optical lithography and controlled etching. The step height is on the scale of a few angstroms. Experimentally determined junction parameters by current-voltage characteristics and Fraunhofer pattern indicate an uniform F-layer thickness and the same interface transparencies for etched and non-etched F-layers. This technique could be used to tailor low-T_c Josephson junctions having controlled critical current densities at defined parts of the junction area, as needed for tunable resonators, magnetic-field driven electronics or phase modulated devices.Comment: 6 pages, 6 figures, small changes, to be published by JA

    Visualizing supercurrents in ferromagnetic Josephson junctions with various arrangements of 0 and \pi segments

    Get PDF
    Josephson junctions with ferromagnetic barrier can have positive or negative critical current depending on the thickness dFd_F of the ferromagnetic layer. Accordingly, the Josephson phase in the ground state is equal to 0 (a conventional or 0 junction) or to π\pi (π\pi junction). When 0 and π\pi segments are joined to form a "0-π\pi junction", spontaneous supercurrents around the 0-π\pi boundary can appear. Here we report on the visualization of supercurrents in superconductor-insulator-ferromagnet-superconductor (SIFS) junctions by low-temperature scanning electron microscopy (LTSEM). We discuss data for rectangular 0, π\pi, 0-π\pi, 0-π\pi-0 and 20 \times 0-π\pi junctions, disk-shaped junctions where the 0-π\pi boundary forms a ring, and an annular junction with two 0-π\pi boundaries. Within each 0 or π\pi segment the critical current density is fairly homogeneous, as indicated both by measurements of the magnetic field dependence of the critical current and by LTSEM. The π\pi parts have critical current densities jcπj_c^\pi up to 35\units{A/cm^2} at T = 4.2\units{K}, which is a record value for SIFS junctions with a NiCu F-layer so far. We also demonstrate that SIFS technology is capable to produce Josephson devices with a unique topology of the 0-π\pi boundary.Comment: 29 pages, 8 figure

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Interference patterns of multifacet 20x(0-pi-) Josephson junctions with ferromagnetic barrier

    Get PDF
    We have realized multifacet Josephson junctions with periodically alternating critical current density (MJJs) using superconductor-insulator-ferromagnet-superconductor heterostructures. We show that anomalous features of critical current vs. applied magnetic field, observed also for other types of MJJs, are caused by a non-uniform flux density (parallel to the barrier) resulting from screening currents in the electrodes in the presence of a (parasitic) off-plane field component.Comment: submitted to PR
    • …
    corecore