622 research outputs found

    Aqueous Extract of Garcinia Indica Choisy Restores Glutathione in Type 2 Diabetic Rats

    Get PDF
    Significant depletion of glutathione (GSH-reduced form) was observed in type 2 diabetes due to oxidative stress. Hence the present study was aimed to investigate a drug which restores GSH along with its anti-diabetic activity. Aqueous extract of Garcinia indica at a dose of 100 mg/kg and 200 mg/kg was given orally to streptozotocin-induced type 2 diabetic rats for a period of 4 weeks. At the end, parameters such as fasting blood glucose, postprandial blood glucose, and GSH in blood were analyzed. Aqueous extract of G. indica significantly decreased both the fasting and postprandial blood glucose in type 2 diabetic rats. The extract also restored the erythrocyte GSH in type 2 diabetic rats. Drug at higher dose, i.e. 200 mg/kg, had a more pronounced effect. Restoring the erythrocyte GSH, an intracellular anti-oxidant in diabetes, will be beneficial specially by preventing the risk of developing complications

    A Predominant Role for Parenchymal c-Jun Amino Terminal Kinase (JNK) in the Regulation of Systemic Insulin Sensitivity

    Get PDF
    It has been established that c-Jun N-terminal kinase 1 (JNK1) is essential to the pathogenesis of insulin resistance and type 2 diabetes. Although JNK influences inflammatory signaling pathways, it remains unclear whether its activity in macrophages contributes to adipose tissue inflammation and ultimately to the regulation of systemic metabolism. To address whether the action of this critical inflammatory kinase in bone marrow-derived elements regulates inflammatory responses in obesity and is sufficient and necessary for the deterioration of insulin sensitivity, we performed bone marrow transplantation studies with wild type and JNK1-deficient mice. These studies illustrated that JNK1-deficiency in the bone marrow-derived elements (BMDE) was insufficient to impact macrophage infiltration or insulin sensitivity despite modest changes in the inflammatory profile of adipose tissue. Only when the parenchymal elements lacked JNK1 could we demonstrate a significant increase in systemic insulin sensitivity. These data indicate that while the JNK1 activity in BMDE is involved in metabolic regulation and adipose milieu, it is epistatic to JNK1 activity in the parenchymal tissue for regulation of metabolic homeostasis

    Selective Inactivation of c-Jun NH2-Terminal Kinase in Adipose Tissue Protects Against Diet-Induced Obesity and Improves Insulin Sensitivity in Both Liver and Skeletal Muscle in Mice

    Get PDF
    OBJECTIVE Obesity is associated with increased activation of the c-Jun NH2-terminal kinase (JNK) in several metabolic organs, including adipose tissue, liver, and skeletal muscle. In this study, we aimed to define the role of JNK activation in adipose tissue in the development of obesity-related insulin resistance. RESEARCH DESIGN AND METHODS Transgenic mice with adipose tissue–specific overexpression of dominant-negative JNK (ap2-dn-JNK) under the transcriptional control of the aP2 gene promoter were generated and subjected to metabolic characterization together with the wild-type littermates. RESULTS On a high-fat diet (HFD), the ap2-dn-JNK mice displayed a marked suppression of both JNK1 and JNK2 activation in their adipose tissue, accompanied by a marked reduction in weight gain, fat mass, and size of the adipocytes. The transgenic mice were resistant to the deleterious impact of an HFD on systemic insulin sensitivity, glucose tolerance, and hepatic steatosis. Reduced hepatic gluconeogenesis was evident in in vivo and ex vivo studies and showed greater insulin-induced glucose uptake in skeletal muscles. These changes were accompanied by reduced macrophage infiltration in adipose tissue, decreased production of proinflammatory adipokines, and increased expression of adiponectin. Indirect calorimetry analysis showed that the transgenic mice had significant increases in oxygen consumption and reductions in respiration exchange rates compared with their wild-type littermates. CONCLUSIONS Selective suppression of JNK activation in adipose tissue alone is sufficient to counteract HFD-induced obesity and its associated metabolic dysregulations, in part through an increase in energy expenditure and a decrease in systemic inflammation

    IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes

    Get PDF
    BACKGROUND: The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. CONCLUSION/SIGNIFICANCE: These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy

    The Role of IRE1α in the Degradation of Insulin mRNA in Pancreatic β-Cells

    Get PDF
    The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.
    corecore