442 research outputs found

    Pattern theorems, ratio limit theorems and Gumbel maximal clusters for random fields

    Get PDF
    We study occurrences of patterns on clusters of size n in random fields on Z^d. We prove that for a given pattern, there is a constant a>0 such that the probability that this pattern occurs at most an times on a cluster of size n is exponentially small. Moreover, for random fields obeying a certain Markov property, we show that the ratio between the numbers of occurrences of two distinct patterns on a cluster is concentrated around a constant value. This leads to an elegant and simple proof of the ratio limit theorem for these random fields, which states that the ratio of the probabilities that the cluster of the origin has sizes n+1 and n converges as n tends to infinity. Implications for the maximal cluster in a finite box are discussed.Comment: 23 pages, 2 figure

    Transforming fixed-length self-avoiding walks into radial SLE_8/3

    Full text link
    We conjecture a relationship between the scaling limit of the fixed-length ensemble of self-avoiding walks in the upper half plane and radial SLE with kappa=8/3 in this half plane from 0 to i. The relationship is that if we take a curve from the fixed-length scaling limit of the SAW, weight it by a suitable power of the distance to the endpoint of the curve and then apply the conformal map of the half plane that takes the endpoint to i, then we get the same probability measure on curves as radial SLE. In addition to a non-rigorous derivation of this conjecture, we support it with Monte Carlo simulations of the SAW. Using the conjectured relationship between the SAW and radial SLE, our simulations give estimates for both the interior and boundary scaling exponents. The values we obtain are within a few hundredths of a percent of the conjectured values

    Geometric Exponents, SLE and Logarithmic Minimal Models

    Full text link
    In statistical mechanics, observables are usually related to local degrees of freedom such as the Q < 4 distinct states of the Q-state Potts models or the heights of the restricted solid-on-solid models. In the continuum scaling limit, these models are described by rational conformal field theories, namely the minimal models M(p,p') for suitable p, p'. More generally, as in stochastic Loewner evolution (SLE_kappa), one can consider observables related to nonlocal degrees of freedom such as paths or boundaries of clusters. This leads to fractal dimensions or geometric exponents related to values of conformal dimensions not found among the finite sets of values allowed by the rational minimal models. Working in the context of a loop gas with loop fugacity beta = -2 cos(4 pi/kappa), we use Monte Carlo simulations to measure the fractal dimensions of various geometric objects such as paths and the generalizations of cluster mass, cluster hull, external perimeter and red bonds. Specializing to the case where the SLE parameter kappa = 4p'/p is rational with p < p', we argue that the geometric exponents are related to conformal dimensions found in the infinitely extended Kac tables of the logarithmic minimal models LM(p,p'). These theories describe lattice systems with nonlocal degrees of freedom. We present results for critical dense polymers LM(1,2), critical percolation LM(2,3), the logarithmic Ising model LM(3,4), the logarithmic tricritical Ising model LM(4,5) as well as LM(3,5). Our results are compared with rigourous results from SLE_kappa, with predictions from theoretical physics and with other numerical experiments. Throughout, we emphasize the relationships between SLE_kappa, geometric exponents and the conformal dimensions of the underlying CFTs.Comment: Added reference

    Be aware of abdominal tuberculosis

    Full text link

    Two-Dimensional Critical Percolation: The Full Scaling Limit

    Full text link
    We use SLE(6) paths to construct a process of continuum nonsimple loops in the plane and prove that this process coincides with the full continuum scaling limit of 2D critical site percolation on the triangular lattice -- that is, the scaling limit of the set of all interfaces between different clusters. Some properties of the loop process, including conformal invariance, are also proved.Comment: 45 pages, 12 figures. This is a revised version of math.PR/0504036 without the appendice

    The signed loop approach to the Ising model: foundations and critical point

    Full text link
    The signed loop method is a beautiful way to rigorously study the two-dimensional Ising model with no external field. In this paper, we explore the foundations of the method, including details that have so far been neglected or overlooked in the literature. We demonstrate how the method can be applied to the Ising model on the square lattice to derive explicit formal expressions for the free energy density and two-point functions in terms of sums over loops, valid all the way up to the self-dual point. As a corollary, it follows that the self-dual point is critical both for the behaviour of the free energy density, and for the decay of the two-point functions.Comment: 38 pages, 7 figures, with an improved Introduction. The final publication is available at link.springer.co

    Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback

    Get PDF
    The onset of pulse propagation is studied in a reaction-diffusion (RD) model with control by augmented transmission capability that is provided either along nonlocal spatial coupling or by time-delayed feedback. We show that traveling pulses occur primarily as solutions to the RD equations while augmented transmission changes excitability. For certain ranges of the parameter settings, defined as weak susceptibility and moderate control, respectively, the hybrid model can be mapped to the original RD model. This results in an effective change of RD parameters controlled by augmented transmission. Outside moderate control parameter settings new patterns are obtained, for example step-wise propagation due to delay-induced oscillations. Augmented transmission constitutes a signaling system complementary to the classical RD mechanism of pattern formation. Our hybrid model combines the two major signaling systems in the brain, namely volume transmission and synaptic transmission. Our results provide insights into the spread and control of pathological pulses in the brain

    Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    Get PDF
    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The velocity of ~3 mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or non-instantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimisation of this feedback is elaborated for different control schemes and ranges of control parameters

    LERW as an example of off-critical SLEs

    Get PDF
    Two dimensional loop erased random walk (LERW) is a random curve, whose continuum limit is known to be a Schramm-Loewner evolution (SLE) with parameter kappa=2. In this article we study ``off-critical loop erased random walks'', loop erasures of random walks penalized by their number of steps. On one hand we are able to identify counterparts for some LERW observables in terms of symplectic fermions (c=-2), thus making further steps towards a field theoretic description of LERWs. On the other hand, we show that it is possible to understand the Loewner driving function of the continuum limit of off-critical LERWs, thus providing an example of application of SLE-like techniques to models near their critical point. Such a description is bound to be quite complicated because outside the critical point one has a finite correlation length and therefore no conformal invariance. However, the example here shows the question need not be intractable. We will present the results with emphasis on general features that can be expected to be true in other off-critical models.Comment: 45 pages, 2 figure

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure
    • 

    corecore