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The onset of pulse propagation is studied in a reaction-diffusion �RD� model with control by
augmented transmission capability that is provided either along nonlocal spatial coupling or by
time-delayed feedback. We show that traveling pulses occur primarily as solutions to the RD
equations, while augmented transmission changes excitability. For certain ranges of the parameter
settings, defined as weak susceptibility and moderate control, respectively, the hybrid model can be
mapped to the original RD model. This results in an effective change in RD parameters controlled
by augmented transmission. Outside moderate control parameter settings new patterns are obtained,
for example, stepwise propagation due to delay-induced oscillations. Augmented transmission con-
stitutes a signaling system complementary to the classical RD mechanism of pattern formation. Our
hybrid model combines the two major signaling systems in the brain, namely, volume transmission
and synaptic transmission. Our results provide insights into the spread and control of pathological
pulses in the brain. © 2009 American Institute of Physics. �DOI: 10.1063/1.3096411�

Traveling pulses are of fundamental importance in neu-
roscience. They not only propagate information along the
nerve fiber, but are also related to pathological phenom-
ena. Examples are cell depolarizations that lead to a tem-
porary complete loss of normal cell functions in migraine
and stroke. This state spreads in cortical tissue via chemi-
cal signals that diffuse through the extracellular space.
We study these spreading depolarization pulses in a stan-
dard reaction-diffusion model and suggest to augment
the transmission capabilities such that they reflect the
cortical structural and functional connectivity. With this
new modality, we investigate control of emerging spread
of pathological states in the brain.

I. INTRODUCTION

Within the past years control of complex dynamics has
evolved as one of the central issues in applied nonlinear
science.1 Major progress has been made in neuroscience,
among other areas, by extending methods of chaos control,
in particular time-delayed feedback,2 to spatiotemporal
patterns3–5 and by developing applications in the field of bio-
medical engineering.6,7 In this study, control is introduced to
suppress spatiotemporal pattern formation. Our emphasis is
on understanding the recruitment of cortical tissue into dys-
functional states by traveling pulses of pathological activity,
in particular, on internal cortical circuits that provide aug-
mented transmission capabilities and that can prevent such
events. Our long-term aim is to design strategies that either
support the internal cortical control or mimic its behavior by
external control loops and translate these methods into appli-
cations.

There is growing experimental evidence that particular
spatiotemporal pulse patterns in the human cortex, called
cortical spreading depression, cause transient neurological

symptoms during migraine.8,9 Similar pulses occur after
stroke, called periinfarct depolarization, and contribute to
the loss of potentially salvageable tissue, i.e., tissue at risk of
infarction.10 These dysfunctional states of the cortex are also
referred to as spreading depolarizations �SDs� to point out
the nearly complete depolarizations of cortical cells and its
spread as the common aspect in these patterns.

SD is usually called a cortical wave, not pulse, which
might cause some confusion. In many cases these two terms
can be used interchangeably. We adhere to a precise math-
ematical terminology, referring to a traveling pulse as a lo-
calized event with a spatial profile having a single front and
back, while a wave usually refers to a periodic spatial profile.
SD is, in this terminology, a pulse. The strict use of this
terminology, i.e., to discriminate between pulse and wave, is
necessary because of the later �in Sec. II� provided definition
of weak susceptibility.11 This definition depends on a bifur-
cation for which one must strictly distinguish between soli-
tary and periodic wave forms.

The pulse of SD extends in the cortex over several cen-
timeters with a remarkably slow speed of several mm/min.
Accordingly, the mathematical description of SD considers
large-scale neuronal activity in populations of neurons rather
than ion channels in the membrane of nerve fibers, and the
spatial coupling is provided by volume transmission, which
is essentially a diffusion process. The first mathematical
model of SD was proposed by Hodgkin and Grafstein12

based on bistable rate equations of extracellular K+ and K+

diffusion. This model, however, describes only the front dy-
namics of SD. We suggest �Sec. III� two extensions to this
model to study the onset of SD. The first is a necessary
extension to obtain onset behavior in the Hodgkin–Grafstein
model. We include in a generic form a recovery process for
the pulse trailing edge. In the second step, we extend this
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model further by nonlocal and time-delayed signal transmis-
sion to study the effect of internal control provided as a
feedback to the traveling pulse. Results and conclusions are
given in Secs. IV and V, respectively.

II. CLASSIFICATIONS OF EXCITABILITY IN LOCAL
ELEMENTS AND EXTENDED MEDIA

Excitability, as a property of a single element, is based
on threshold behavior and therefore requires a nonlinear pro-
cess with a stable fixed point. If the system is sufficiently
perturbed from this fixed point, it returns after a large excur-
sion in phase space, emitting a spike.13 If excitable elements
are locally interconnected, a new behavior can emerge,
namely, the capacity to propagate a sustained pulse through
this spatially extended system. This emergent property de-
fines a medium as being excitable, also termed an active
medium. Excitable elements and excitable media differ in
their response to superthreshold stimulation. The response of
an excitable element to a superthreshold stimulation will
eventually end in the stable fixed point value of the steady
state of this element. In contrast, the response of an excitable
medium, which is initially in the homogeneous steady state,
to a superthreshold stimulation results in approaching a new
attractor, the pulse solution. Note, however, that the super-
threshold stimulation to evolve in a single pulse must be
confined in space and time. For other stimulations, the media
would also admit several pulses as solutions or periodic
pulse trains, i.e., a traveling wave. However, the different
behaviors of local elements and spatial media indicate that
there are also different ways to classify excitability in ele-
ments and media.

In Sec. II A definitions are provided for excitability of
local elements with a focus on neural systems. Some of our
results concerning control of spatial-temporal patterns can be
explained by considering the effect of control on the local
dynamics �Sec. IV B 1�. Furthermore, we will consider local
dynamics with the aim to extend the Hodgkin–Grafstein
model �Sec. III�. However, our main focus is on spatial ex-
citability �Sec. II B� and its control by nonlocal and time-
delayed feedback described in Secs. IV A and IV B, respec-
tively. For a thorough treatment of local dynamics, in
particular in neural systems, see, for example, Ref. 14 or for
more complex discharge patterns, such as bursting, see
Ref. 15.

A. Local excitability

A generic mechanism of local excitability requires a cer-
tain configuration of trajectories in the phase space of a
single excitable element �inset in Fig. 1�. This configuration
usually results from the parameter vicinity of an oscillatory
regime whose large amplitude limit cycle is suddenly
destructed.15

The parameter space is schematically depicted in Fig. 1,
where the white area corresponds to the oscillatory regime,
and the colored areas mark various regimes of excitability
and nonexcitability. If parameter settings are in the excitable
regime �to the right of the thick blue dashed line�, a rest state
�fixed point� is the only attractor. There exists also a thresh-

old close to this rest state, e.g., a “sharp” separatrix or tra-
jectory in phase space �thin dashed line, in the inset�. Trajec-
tories starting on the near side of the threshold �green dotted�
approach the rest state directly �subthreshold response�,
while those starting on the far side �red solid� perform a large
excursion in phase space, guided by the ghost of a destructed
large amplitude limit cycle before returning to the rest state
�superthreshold response�. Note that we refer to excitable
elements and not to neurons because also a population of
neurons described in a firing rate model can behave like an
excitable element.

The way in which, by changing a bifurcation parameter,
the dynamics of the local element changes from excitable to
oscillatory behavior, that is, the way the large amplitude limit
cycle is built up, is used to classify the type of excitability in
a single excitable element. This can happen in different
ways, two of which are usually distinguished.14 Type I excit-
ability obtains its characteristic features from a saddle-node
infinite period �SNIPER� bifurcation: the frequency of the
emerging periodic orbit tends to zero, while the amplitude
starts with a finite value. Type II excitability is caused by a
Hopf bifurcation, which is characterized by the features that
the periodic orbit emerges with zero amplitude and nonzero
frequency. In practice, the main characteristic for type II ex-
citability is, however, the onset frequency because for this
type a canard explosion renders the zero amplitude practi-
cally invisible.
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FIG. 1. �Color� Parameter space of excitable systems illustrating a universal
scheme for classifications of both local and spatial excitability in general
models of active media. Bifurcation lines for excitable elements of an active
media are marked by thick blue �dashed� lines. Transitions from the excit-
able �magenta, red, orange� to the oscillatory regime �white� occur usually
either through a SNIPER bifurcation causing excitability of type I, or via a
Hopf bifurcation �h� causing excitability of type II. Between the SNIPER
and a further SN bifurcation line �magenta� three fixed points �stable node,
unstable focus, and saddle� exist in the local excitable elements. The thick
white solid lines �C, �M, and �R mark bifurcations of active media where
the spatiotemporal pattern in 2D changes �complex, meandering, and rigid
rotating spiral patterns, to the left of �C, �M, and �R, respectively�. At �P
the medium becomes nonexcitable. Sustained pulses do not exist in the
yellow regime but there is a transient propagating pulse. To the right of �S
�green� the transient activation radius becomes zero. The insets �thin lines�
indicate the corresponding configuration of trajectories in phase space, with
limit cycle �LC�, sharp separatrix �s�, and fixed point �FP�.
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B. Onset of pulse propagation in spatial excitability

The important criterion for spatial excitability is the ex-
istence of a traveling pulse solution. In contrast to an excit-
able local element and its corresponding phase space con-
figuration �inset in Fig. 1�, excitability in active media is
based on bistability. A superthreshold stimulation takes the
system from the homogeneous steady state into the basin of
attraction of the pulse solution. The classification of spatial
excitability in active media is based on this configuration in
phase space. For example, the primary rough classification
into excitable and nonexcitable media is based on the exis-
tence and nonexistence, respectively, of the pulse as the most
basic spatiotemporal pattern that sustainedly propagates in
space. This propagation boundary is called �P.16 The focus
in this study is on the onset of excitability in active media
at �P.

The propagation boundary �P is determined in the pa-
rameter space of a comoving frame. In this frame, �P is
caused by a saddle-node bifurcation above which traveling
pulse solutions exist. As active media are usually based on a
reaction-diffusion �RD� mechanism, this bifurcation is com-
puted in a parabolic partial differential equation �PDE�. The
details of this computation can be found in textbooks17 and
have been further related to the phenomenon of SD in the
cortex in Ref. 3. Therefore, we just sketch the basic idea. The
propagation boundary in a parabolic PDE is obtained by
searching pulse profiles as stationary solutions in a comoving
frame. The pulse solution of the profile equation in the co-
moving frame must tend to the fixed point value of the origi-
nal system for �→ ��, with � being the spatial coordinate in
the comoving frame. A traveling pulse is thus equivalent to
the existence of a homoclinic orbit satisfying a system of
ordinary differential equations, namely, the profile equation
system, with appropriate boundary conditions. �P is deter-
mined numerically by continuation of a homoclinic orbit in
this profile equation detecting the saddle-node bifurcation,
where two homoclinic orbits corresponding to a fast and a
slow pulse solution collide and annihilate. For higher values
of �, �, or � no stationary pulse solution exists.

In Sec. IV we describe how the locus of the propagation
boundary �P in the parameter space is controlled by nonlocal
spatial coupling and time-delayed feedback by a shift to new
parameter values without adding a distinctly new character
to the spatiotemporal patterns, as schematically illustrated in
Fig. 2. Since the propagation boundary is essentially a fea-
ture of an active medium with one spatial dimension, we can
limit our main investigation to one-dimensional �1D� sys-
tems. Yet, to get a picture of the patterns that arise in the
neighborhood of �P, we will end Sec. II by a brief review of
patterns in higher spatial dimensions and provide definitions
of weak excitability and weak susceptibility.

C. Weak excitability and weak susceptibility

The variety of qualitatively different spatiotemporal pat-
terns in higher excitable regimes, i.e., beyond �P toward the
oscillatory regime �to the left of �P in Fig. 1�, provides the
foundation for a classification of spatial excitability in active
media. This is in so far analogous to the classification into

types I and II of excitable local elements �Sec. II A� as both
classifications are built on the patterns that emerge. However,
the classification of local excitability defines different types
of mechanisms, whereas the classification of spatial excit-
ability characterizes rather the degree of excitability.

Excitability is described by ordinary differential equa-
tions in local elements and by PDEs in spatial media.
Roughly speaking, the additional independent spatial vari-
able allows for more complex patterns due to the fact that the
spatial dimension renders the phase space infinite dimen-
sional. In fact, the patterns can become even more complex if
spatial dimensions are increased from one to two �for ex-
ample, spiral waves in retinal spreading depression18� or
three dimensions �Winfree turbulence of scroll waves in car-
diac fibrillation19�.

Close to the propagation boundary, the complexity of
emerging patterns is largely independent of the number of
spatial dimensions. This fact is also paraphrased as weak
excitability.20 This term is used for active media to indicate
that either no reentrant patterns occur �described by the rotor
boundary �R,16 see Figs. 1 and 2� or that the rotation period
is large enough, so that the front of the pulse does not inter-
act with its refractory back. The onset of interactions be-
tween front and refractory back in a re-entrant wave pattern
is described by the meandering boundary �M �see Fig. 1�. To
the left of this boundary, the core of a freely rotating spiral
wave performs a meandering pattern,21,22 whereas to the
right of �M, the spiral core follows a rigidly circular
rotation23 �Fig. 2�. Changing excitability parameters further,
the spiral core can start to perform more complex maneuvers
to avoid the refractory zone �complex boundary �C� �see
Fig. 1�.

Patterns of spreading depression in chicken retina are
observed in vitro in the complex regime to the left of �C,18

but in human brain tissue they occur close to �R. It was
predicted that the window of cortical excitability lies be-
tween �R and �P �Ref. 24� and this seems to be confirmed by
a functional magnetic resonance imaging study in migraine,

retracting collapsing

particle−like

parameter space

borderline case

not spreadingspiral−shaped

weak excitability
weak susceptibility

control
∂P∂R ∂S

FIG. 2. �Color online� Scheme of the classification of excitability according
to spatiotemporal patterns �spiral-wave, particlelike, retracting, collapsing,
and no spread� in 2D: wave front at two instances in time �t1: black, t2: gray�
and trajectory of open wave ends �dashed�. This scheme illustrates the effect
of control on the propagation boundary ��P� by additional nonlocal and
time-delayed transmission capabilities. �P is controlled by shifting the bi-
furcation in parameter space �horizontal �multicolored� line�. This affects the
regime of weak susceptibility centered around �P and bounded by the rotor
boundary �R and the spreading boundary �S.
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mapping spatiotemporal patterns of symptom reports onto
the folded cortical surface.25 These patterns are similar to
particlelike or retracting wave segments that occur between
�R and �P.26–28 Transient patterns can also be observed at
even lower excitability, limited by the spreading boundary �S
�Ref. 29� �Fig. 2�. Since the regime of retracting wave seg-
ments is not identical to weak excitability �absence of front-
back interactions�, it was called weak susceptibility based on
a susceptibility scale that can also be operationally defined in
experimental systems.25 The control of excitability in media
being weakly susceptible to pattern formation can be inves-
tigated in a model with one spatial dimension because �P is
essentially a property of a 1D parabolic PDE.

III. REACTION-DIFFUSION WITH AUGMENTED
TRANSMISSION CAPABILITY

The generic framework to model spatial excitability is a
RD system of activator-inhibitor type. In fact, already a
single species model has the capacity to propagate fronts.30

Such a model was originally suggested for SD by Hodgkin
and Grafstein12 �Sec. III A�. We extend this generic model by
choosing appropriate inhibitor dynamics �Sec. III B� to ob-
tain pulses with the onset saddle-node bifurcation �P and
introduce augmented transmission capabilities �Sec. III C�.

A. Hodgkin–Grafstein model

A single species model of bistability has the capacity to
propagate one state into the other if these bistable dynamics
of the species, called u, are coupled by diffusion

�u

�t
= f�u� − v +

�2u

�x2 , �1�

f�u� = u −
u3

3
. �2�

Here v is a bifurcation parameter. In these nondimensional
equations, the diffusion coefficient, which merely scales
space, is set to unity.

Equations �1� and �2� were proposed by Hodgkin as a
model for spreading depression based on the bistable K+ dy-
namics suggested by Grafstein.12 The front profile of the spe-
cies u and its speed can be calculated analytically for the
cubic polynomial form of f�u�, i.e., the generic form of
bistable dynamics �see, for example, the textbook in Refs. 31
and 32�. In the context of control one should think of the two
stable states as one being a physiological �healthy� state and
the other one being a pathological �depolarized� state, and
the latter invading the former, which shall be prevented by
control.

As is shown in Sec. IV, control of the onset of propaga-
tion depends essentially on the interaction of the healthy
state with the pulse front via the augmented transmission
capability. However, in the system defined by Eqs. �1� and
�2� there does not exist a boundary like �P �Sec. II B�. In
other words, there is no abrupt onset of the capacity to
propagate fronts with finite speed. Instead, the heteroclinic
orbit, which corresponds to the front profile in a comoving
frame, exists for the whole bistable regime, in particular also

for arbitrarily slow velocities of the comoving frame includ-
ing zero �standing front�.31 To obtain propagation onset be-
havior, we need to add inhibitor dynamics, i.e., a second
recovery species for the Hodgkin–Grafstein model.

B. Extension by inhibitor dynamics

With a proper choice of a second species whose dynam-
ics is coupled to u, the local system can change from bistable
to excitable dynamics, which is needed to observe and com-
pute �P. The natural choice is to use the bifurcation param-
eter v of the Hodgkin–Grafstein scheme as the additional
species, namely, as an inhibitor,

�v
�t

= �g�u,v� . �3�

The rate function g�u ,v� of the inhibitor determines the dy-
namics in the refractory phase of the pulse, where it recovers
the initial healthy state that was recruited into the pathologi-
cal state of species u. In this two-species model, u is called
the activator. Inhibitor dynamics usually changes on a
slower time scale ��1.

There are several models in the neuroscience literature
obeying this structure in Eqs. �1�–�3�, both models with local
excitability of type I �Refs. 31 and 33� and of type II.34–36

These models are, however, models of action potentials de-
scribing the propagation of normal electrophysiological ac-
tivity along single nerve fibers. Therefore these models do
not relate directly to SD because SD is caused by large-scale
neuronal activity.37,38 Therefore the analogy to models as in
Refs. 31 and 33–36 is mainly formal in the mathematical
structure but not in its biological interpretation. For example,
in the Hodgkin–Grafstein equation �Eqs. �1� and �2��, the
activator is K+, while in action potential models it is the
membrane potential.

Models exhibiting type I excitability are also capable to
show type II behavior for a certain parameter regime but the
reverse is not necessarily true. This suggests that type II
behavior is more generic because it can be observed in both
types of models and only requires a rate function g�u ,v� that
is linear in both arguments. We introduce inhibitor dynamics
as

g�u,v� = u + � − �v . �4�

With this choice, the local excitable dynamics is of type II.
The parameters � and � determine the precise configuration
of trajectories in phase space that lead to excitability and are
thus, in addition to �, the only two parameters that control
excitability of type II in a normal form model.

Equations �1�–�4� correspond to the well studied
FitzHugh–Nagumo �FHN� systems, which is, in fact, used as
a paradigm for excitable systems.13 Pattern formation in a net
of FHN elements under the influence of time-delayed feed-
back was investigated with the aim to increase the coherence
of noise-induced wave patterns.39,40 In the excitable regime
the system has one fixed point, depending on the parameters
� and �. For the setting ��=0.85, �=0.5�, the fixed point is
�u�=−1.1684, v�=−0.6367�.
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C. Augmented transmission capability

We extend the FHN model by introducing augmented
transmission capability into Eqs. �1�–�4� as a feedback loop41

� �tu

�−1�tv
� = � f�u� − v

g�u,v�
� + D�u

v
� + H�u

v
� , �5�

where D is the local diffusion operator, and H represents the
augmented transmission capability. In Eqs. �1�–�4� we have
considered diffusion in the activator species u only:

D = ��2 0

0 0
� . �6�

The augmented transmission capability

H = KF �7�

is described by the control strength K and the control matrix

F = �F11 F12

F21 F22
� , �8�

whose element Fij are operators which represent three indi-
vidual steps of the control by augmented transmission
�CAT�, namely, �i� selecting a species j whose transmission
capability is augmented, �ii� creating the control force from
this species, and �iii� feeding this control force back into the
dynamical variable i �see Fig. 3�.

Formally, this can be represented by splitting Fij =AijF
into the components of a coupling matrix A, which repre-
sents the coupling scheme, and an operator F that creates the
type of control signal. For instance, A may be chosen as one
of the following:

Auu = �1 0

0 0
�, Auv = �0 1

0 0
� ,

�9�

Avu = �0 0

1 0
�, Avv = �0 0

0 1
� ,

where the upper indices label the coupling scheme, e.g., Auu

denotes a matrix representing the coupling scheme uu.
The control signal F is generated from the input variable

s=u or s=v by time-delayed or nonlocal feedback. For ex-
ample, in time-delayed feedback as introduced by Pyragas,2

the operator F creates the difference between the time-

delayed signal s�t−�� and its current counterpart s�t�. We
study this type and two nonlocal types of coupling. The con-
trol force F of these different types, as a function of the
signal s, is described in detail in Secs. IV A and IV B. It
should be noted that in Eq. �5�, H represents cortical
circuits42 and neurovascular coupling,3 that is, internal con-
trol loops.

The four coupling matrices in Eq. �9� lead to four trans-
mission pathways, also termed coupling schemes: two self-
couplings uu and vv, and two cross-coupling vu and uv,
corresponding to the upper indices ij in Eq. �9�. Note that
other coupling schemes represented by the coupling matrix
A, for example, diagonal coupling or coupling with a rota-
tion matrix,5,43,44 can also be investigated within this frame-
work.

IV. SUPPRESSION OF PULSE PROPAGATION

We perform simulations of the RD system in Eqs.
�1�–�4� in one spatial dimension with RD parameter settings
��=0.1, �=0.85, and �=0.5� for the weakly excitable regime
close to the propagation boundary �P �Sec. II B�. The RD
system is extended by three types of coupling in the frame-
work of Eq. �5�, i.e., two types of nonlocal spatial coupling
�isotropic and anisotropic� and one type of time-delayed
feedback. In the context of SD, nonlocal spatial and local
time-delayed couplings represent neural structural and func-
tional connectivity and neurovascular feedback in the cortex.
This is discussed in more detail in Ref. 3. For each type of
coupling there are four principal coupling schemes, two self-
coupling schemes �uu ,vv� and two cross-coupling schemes
�uv ,vu�, defined by the coupling matrix A in Eq. �9�.

We initialize each simulation with a stable pulse profile
solution of the RD system in Eqs. �1�–�4� to investigate the
effect of control on RD excitability. This is accomplished by
testing whether this specific initial condition of the free sys-
tem �RD only� is in the basin of attraction of the homoge-
neous steady state of Eq. �5�, i.e., the controlled system �RD-
CAT�. There are two CAT parameters: the control gain K in
Eq. �7�, and a spatial �	� or temporal ��� control scale, re-
spectively, which will be introduced in Secs. IV A and IV B.
For a large range of these two CAT parameters, we determine
whether pulse propagation is suppressed or not. The propa-
gation is suppressed if the excitation dies out, so that the
system approaches the homogeneous steady state. In this
case, CAT is considered successful. In the reverse case, any
sustained spatiotemporal pattern that evolves from the initial
conditions �free pulse solution�, after the CAT is “switched
on,” is considered an unsuccessful control since the activity
is not completely suppressed and the homogeneous steady
state is not reached.

For the following simulations we adopt an active me-
dium with a spatial extension of L=160. As spatial increment
in the discretized Laplacian D we take 	x=0.2. All simula-
tions are run for 2000 time units and use an Euler forward
algorithm with discretization 	t=0.001 25. The spatial and
temporal widths of the free-running activator pulse, 
x and

t, respectively, serve as reference space and time scales.3 In
the dimensionless units of the FHN system, the pulse width
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FIG. 3. Diagrammatic view of control by augmented transmission �CAT�.
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measured at the level of 5% of the excess value above the
homogeneous fixed point level is 
x=8.645 or 
t=10.7274.

A. Pulse suppression by nonlocal spatial
coupling

In this section we present results on two types of spatial
coupling.

1. Isotropic coupling
Nonlocal isotropic spatial coupling is defined as

F�s� = s�x + 	,t� + s�x − 	,t� − 2s�x,t� , �10�

where s=u or s=v.
Regimes in which RD pulses are suppressed by addi-

tional nonlocal connections are calculated for the parameters
	 and K and represented by gray areas in Fig. 4. For the two
self-coupling schemes uu and vv, shown in Figs. 4�a� and
4�d�, respectively, the sign of the gain parameter K deter-
mines the effect of the nonlocal connection. Pulse propaga-
tion can only be suppressed for K�0. For the two cross-
coupling schemes uv and vu, shown in Figs. 4�b� and 4�c�,
respectively, the sign of the gain parameter K changes at
	�
x for pulse suppression, and these two cross-coupling
schemes show similar control domains with respect to reflec-
tion K→−K.

The sign of K in the control domains of the self-coupling
schemes �Figs. 4�a� and 4�d�� can be qualitatively understood
by considering the effect of nonlocal connections upon the
homogeneous steady state in the limit 	→0. For K�0, this
limit corresponds to diffusively coupled elements. In general,
the homogeneous steady state is stabilized by diffusion
against small inhomogeneous perturbations. In the same way,
a local perturbation is leveled by a nonlocal connection in
the form of Eq. �10� for self-coupling. In the diffusion limit,
however, K would increase the diffusion coefficient, which
causes the pulses to become broader. Yet, a qualitative
change in the dynamics cannot occur by changing the diffu-
sion coefficient. Therefore the effect of suppressing pulses
depends on the nonlocal character of the connection, which
must extend at least over a distance of about 20% of the
pulse width 
x, as can be seen by the onset of the control
domain at values of 	 /
x�0.2 in Figs. 4�a� and 4�d�.

The control domains of the cross-coupling schemes
�Figs. 4�b� and 4�c�� are qualitatively different from self-
coupling. K changes its sign at 	�
x within one scheme
and, accordingly, the situation of pulse suppression is more
complex. There is a long-range regime �	�
x� and a short-
range regime �	�
x�.

2. Anisotropic backward coupling
Nonlocal connections can also be introduced in only one

direction

F�s� = s�x � 	,t� − s�x,t� . �11�

This directed connectivity would correspond to anisotropic
nonlocal coupling in a two-dimensional �2D� excitable me-
dium. One reason to investigate this type of connectivity is to
obtain a better understanding of the results in the Sec. IV A 1
by separating effects of forward and backward connections
�Fig. 5�a��. Moreover, the functional and structural connec-
tivity of the cortex is realistically modeled as an anisotropic
�and also inhomogeneous� medium due to the patchy nature
of nonlocal horizontal cortical connections. While anisotro-
pies in the cortical connections are usually considered to
merely cause variations in wave speed in different directions,
inhomogeneities are known to cause wave propagation
failure.45 In contrast, our focus is on the change in excitabil-
ity by anisotropic nonlocal coupling that leads to suppression
of wave propagation.

We limit your investigation to the backward connection.
This corresponds to the plus �minus� sign in Eq. �11� for
pulses propagating in the positive �negative� x direction
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FIG. 4. Control planes of isotropic spatial coupling spanned by the two CAT
parameters: control gain factor K and nonlocal space scale 	 normalized to
pulse width 
x �left scale� and in spatial units �right scale�. �a� Activator
self-coupling scheme uu, �b� cross-coupling uv �inhibitor signal fed back to
activator rate equation�, �c� vu �reverse�, and �d� inhibitor self-coupling vv.
Suppression of pulse propagation is marked by gray control domains. Pa-
rameters: �=0.1, �=0.85, �=0.5, and 
x=8.65.
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�solid arrow in Fig. 5�a��. We choose the backward connec-
tion because this type of coupling shares many properties
with local time-delayed feedback coupling, as we will show
by comparing the results from this section with those of
Sec. IV B.

The control domain of the uu self-coupling scheme �Fig.
6�a�� is very similar to the isotropic one shown in Fig. 4�a�.
This indicates that in the uu scheme of isotropic coupling the
backward connection accounts for the main contribution to
suppression of wave propagation. However, we want to note
that both control types �isotropic and anisotropic� with the
same coupling scheme uu can differ in their efficiency within
some parts of the gray control domain �not shown�. The ef-
ficiency refers to the length a pulse travels after the connec-
tivity is switched on. This transient effect was investigated in
detail in Refs. 3 and 29, whereas in this study we concentrate
on an understanding of the size and shape of control domains
for the different schemes and types of coupling �Figs. 4, 6,
and 7�.

Pulse propagation is not suppressed by the vv self-
coupling scheme for anisotropic backward coupling for any
control parameter within the investigated range �Fig. 6�d��.
This, however, does not mean that the pulse propagates es-
sentially unchanged. Any sustained spatiotemporal pattern
other than the homogeneous steady state that evolves from
the free initial pulse solution—after the connectivity is
switched on—is considered as unsuccessful pulse suppres-
sion. In fact, for the vv scheme of anisotropic coupling in the
expected control domain of corresponding Fig. 4�d�, the ho-
mogeneous steady state becomes unstable and stationary spa-
tial patterns emerge after the initial pulse is suppressed.

The control domains of the cross-coupling schemes
�Figs. 6�b� and 6�c�� are similar to Figs. 4�b� and 4�c� in the
long-range regime except for a failure of suppression in the
isotropic uv scheme for K�0.2. The long-range regime for
anisotropic backward cross coupling extends over the nearly
complete spatial scale of 	 �except for very small 	�. Thus, K
does not change its sign. Also, there is a perfect reflection
symmetric pattern in the control planes with respect to the
axis K=0 for the two cross-coupling schemes. This led us to
conclude that the sign of K for pulse suppression in the long-

range regime of isotropic coupling depends mainly on the
backward connection �solid arrow in Fig. 5�a��. In the short-
range regime, the effect of the forward connection �dotted
arrow in Fig. 5�a�� seems to dominate and oppose the effect
of the backward connection.

The reason for the reflection symmetry in the pattern of
control domains for cross-coupling schemes and, further-
more, the explanation for the observed signs of the gain pa-
rameter K for the control domains of all coupling schemes
for anisotropic backward coupling are given in Sec. IV C
together with the explanation of some of the results we have
obtained for local time-delayed feedback control �Pyragas
feedback�, which will be described in Sec. IV B.

B. Pulse suppression by local time-delayed feedback

In case of local time-delayed feedback, the control force
F is given by

F�s� = s�x,t − �� − s�x,t� , �12�

where � is the delay time. Note the formal similarity to Eq.
�11�. This control method was first introduced by Pyragas2

for chaos control. In Fig. 5�b�, this control method is illus-
trated for the uu coupling scheme: at each spatial location x
the activator u at time t receives the signal from the same
location but at the past time t−�. That means particularly for
the dynamics of the front that the deviation from the homo-
geneous fixed point is fed back.

The domains of successful control, i.e., pulse suppres-
sion, in the �K ,�� plane are shown as gray areas in Fig. 7.
For successful control, the pulse dies out and the system
returns to the homogeneous steady state, as shown exemplar-
ily in the space-time plot of Fig. 8�b�.
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FIG. 6. Control planes of anisotropic backward spatial coupling. Parameters
and notation as in Fig. 4.
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FIG. 7. Control planes of time-delayed feedback coupling spanned by the
two CAT parameters: control gain factor K and time delay � normalized to
pulse width 
t �left scale� and in temporal units �right scale�. �a� Activator
self-coupling scheme uu, �b� cross-coupling uv �inhibitor signal fed back to
activator rate equation� and �c� vu �reverse�, and �d� inhibitor self-coupling
vv. Suppression of pulse propagation is marked by gray control domains.
The black lines denote saddle-node bifurcations, which were also found and
investigated in detail in two delay-coupled FHN systems �Refs. 46 and 47�.
The dashed lines mark the values of control parameters for which the
u-amplitude of a single local FHN system, stimulated in u by I�t� �shown as
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controlled system. Parameters as in Fig. 4, 
t=10.73.
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For time-delayed feedback, a domain of successful con-
trol exists for each coupling scheme. As for the spatial cou-
pling schemes in Figs. 4 and 6, the two cross-coupling
schemes uv and vu show a reflection symmetry with respect
to the axis K=0. This symmetry is explained by the effective
parameters introduced in Sec. IV C. Coupling schemes that
feed back the signal to the activator can suppress pulses for
positive K. For coupling schemes that feed back the signal to
the inhibitor, successful control is possible for negative val-
ues of K. This is similar to the results of anisotropic back-
ward coupling �cf. Fig. 6�. This similarity is due to the simi-
larity of the signals the pulse receives through the feedback.
In both cases the wave front gets the feedback from the ho-
mogeneous steady state which is ahead of the wave, in a
temporal or spatial sense, respectively.

The main differences between the control domains of
time-delayed feedback and spatial anisotropic coupling are
that in the case of time-delayed feedback the control domains
are limited toward large values of � �upper borders of gray
domains in Figs. 7�a�–7�d��, and, moreover, that there is a
control domain also for vv, the inhibitor self-coupling
scheme. The limitation of the control domains toward large
values of � is caused by the formation of tracking patterns48

�Fig. 8�, which is further explained in Sec. IV B 2. These
patterns emerge by delay-induced oscillations. The local dy-
namics becomes bistable due to a saddle-node bifurcation
�black solid lines, Fig. 7�. This is demonstrated in Sec.
IV B 1 and IV B 2.

1. Effect of time-delayed feedback in a local excitable
system

In this section we investigate the effect of time-delayed
feedback on a single local excitable element. There are two
main effects. First, depending on the sign of the control pa-
rameter K and the coupling scheme, the activator amplitude
is reduced, which selects the location of the control domain
in the control plane with respect to the axis K=0 �Fig. 7�.
Furthermore, we show that a minimum amplitude reduction
of about 10% is needed to suppress pulse propagation when
these elements form an active medium �lower bounds of the
control domains�. Second, for too large a value of �, the local
dynamics becomes bistable �upper bounds of the control do-
mains�.

To obtain qualitative insight into how time-delayed feed-
back operates, we perform numerical simulations in order to
compare trajectories starting from the same initial conditions
with and without time-delayed feedback. Figure 9 shows ex-
emplary superthreshold phase space excursions with and
without �K=0� time-delayed feedback �solid and dashed tra-
jectories, respectively�. The system is initialized in the inter-
val �t0−� ; t0� �history function� with the fixed point value
�u=u� and v=v�� and for t0 with a superthreshold value �u
=u�+0.5 and v=v��.

For coupling schemes that feed back into the activator
rate equation, i.e., uu and uv, the control force acts parallel
to the u axis. In Fig. 9�a� the trajectories with and without
control for the uu coupling scheme are plotted. The direction
of the control force is denoted by the horizontal arrow. In
order to reduce the amplitude in u, the control force has to be
directed toward the fixed point, i.e., it has to be negative for
u�u� and v�v�. This is the case for t�� if K�0 because
the history function is initialized as �u� ,v��.

For the vu and vv coupling scheme, the control force
acts parallel to the v-axis. In Fig. 9�b� the trajectories with
and without control are shown for vv coupling. The direction
of the control force is denoted by the vertical arrow. To get
lower amplitudes of u, the control force has to be directed
toward the opposite direction of the fixed point. This is the
case for t�� if K�0.

In the following, the reduction in the amplitude u of a
single local FHN system is investigated in order to obtain the
lower boundaries �dashed� of the control domains in Fig. 7.
To excite the system a stimulation current I�t� �inset of Fig.
7�d�� is added to the activator u. To obtain a stimulation
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FIG. 8. �Color� Pattern formation for �=0.1, �=0.85, and �=0.5: �a� pulse
propagation without control; �b� suppressed pulse via nonlocal coupling
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current of suitable magnitude, we record the diffusion signal
fed into a local FHN element as a pulse is passing. I�t� is this
signal, whereas we only use it as a stimulation current up to
its maximum value �solid line�. The dotted line denotes the
further evolution of this signal.

Choosing for each coupling scheme the proper sign of
control gain K to reduce the activator amplitude, time-
delayed feedback is activated and the maximum amplitude
umax is observed. By performing a bisection method for each
value of K, the proper � is detected that reduces umax by 10%
from the original amplitude after stimulation without feed-
back �K=0�. The dashed lines in Fig. 7 mark the positions
where the u-amplitude is reduced by 10% for a fixed stimu-
lation. These lines form the lower boundaries of the control
domains.

Also the upper boundaries of the control domains can be
understood by investigating the single system with feedback.
For large K and � the system becomes bistable in the sense
that in addition to the stable fixed point a stable limit cycle
occurs. This limit cycle appears in a saddle-node bifurcation
of limit cycles, as was also found in a system of two delay-
coupled FHN systems.46,47 The limit cycle emerges if �i� � is
sufficiently large to allow for recovery to the fixed point, and

�ii� the feedback and, hence, the gain parameter K are strong
enough to push the system beyond the threshold.

Again with the help of a bisection method, the saddle-
node bifurcation lines for the single system are determined in
the �K ,��-plane. In Fig. 7 they are plotted as black solid
lines. These lines mark the boundaries where the local dy-
namics becomes bistable and control fails. Only in the case
of uu coupling the boundary of the control domain deviates
appreciably from this bifurcation line. This is due to the sta-
bilizing effect of diffusion that damps out local oscillations.
Since in the interspace the single system is bistable and thus
the medium is able to perform homogeneous oscillations, the
difference between the upper boundary of the control domain
and the bifurcation line depends on the initial conditions that
are chosen to locally stimulate the medium.

Investigating a single FHN element with time-delayed
feedback provides a qualitative understanding of the dynam-
ics of the controlled spatial system: the sign of K and the
form of the control domains can be understood. Thus the
control of local excitability provides control of the global
spatial excitability. This will be quantified in Sec. IV C. In
Sec. IV B 2, we present the spatiotemporal patterns that
emerge above the upper boundary of the control domain, i.e.,
the bistable domain of the single local element.

2. Delay-induced oscillatory pattern formation
As we have seen in Sec. IV B 1, the local FHN dynamics

with time-delayed feedback becomes bistable for too large
values of K and �. Due to this local bistability, in the spa-
tially extended system delay-induced oscillatory pattern for-
mation occurs �Fig. 8�c��: after a local stimulation, the me-
dium performs local oscillations that spread slowly. Within
each local oscillation, the excitation spreads a short way, and
thus gradually new parts in the neighborhood become ex-
cited. The area of oscillatory excitation grows slowly all over
the medium. We have observed these patterns for each cou-
pling scheme beyond the upper boundary of the control do-
main.

This effect will again play an important role in Sec.
IV C 2, that focuses on the propagation boundaries in
�� ,��-parameter space.

C. Description through effective parameters

In this section we further investigate the two control
schemes of spatial anisotropic backward coupling and local
time-delayed feedback to achieve an analytic approximation.
In Sec. IV C 1 we use this to describe the change in excit-
ability and in Sec. IV C 2 we investigate how this is reflected
in the parameter space.

For our approximation we assume that the front dynam-
ics governs the location of the propagation boundary �P.
Therefore we focus on the part of control that acts on the
front dynamics. For the coupling types of time-delayed feed-
back and nonlocal anisotropic coupling, the front of the pulse
receives the feedback of the homogeneous steady state. The
main idea is to replace the time delayed �in Eq. �12�� or the
space-shifted �in Eq. �11�� quantities by their fixed point val-
ues �u�x , t−��=u�x+	 , t�=u� and v�x , t−��=v�x+	 , t�=v��.
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This transforms the controlled system, after some simple al-
gebraic manipulations, into the form of the uncontrolled sys-
tem �K=0�, but with new effective values of the parameters

�̃�K�, �̃�K�, and �̃�K�.
For each coupling scheme, the obtained effective param-

eters and the corresponding transformations are shown in
Table I. Since the delayed or shifted quantities are replaced
by the fixed point values, the obtained effective parameters

�̃, �̃ and �̃ only depend on K and not on � or 	.
Although the transformations look rather complex there

is a common feature for vv and the two cross-coupling
schemes vu and uv: the change in the parameters is such that
the fixed point value of the system does not change, i.e., for
these three coupling types, the fixed point after the transfor-
mation to the system with effective parameters has the same
homogeneous fixed point as the system without control.
Since for the uu coupling scheme the transformation is more
complex, the fixed point in the transformed equations differs
from that in the original equations, i.e., the intersection of the
nullclines changes its relative position with respect to the
cubic nullcline. Note that this does not mean that the fixed
point of the original system changes by adding control. Due
to the noninvasivity of all investigated control types, the
fixed point does not change. However, the transformation
that converts the original system with control into a new
system without control but effective parameters is, in the
case of uu coupling, not invariant for the fixed point �u� ,v��.

The effects of parameter changes in the FHN system are
well known.3,29 As rule of thumb, one can keep in mind that
the larger �, �, or �, the lower the excitability of the system.

In the following the K dependence is discussed. In the
case of vv coupling, � does not change. For K�0, only �
becomes larger, while � decreases. However, the change in �
dominates, i.e., the excitability decreases for K�0.

For vu coupling, �̃ and �̃ increase for K�0, while �̃
decreases. In that case the influence of changing �̃ domi-
nates, i.e., excitability decreases for K�0. For uu and uv
coupling, �̃ and �̃ increase for K�0, while �̃ decreases. The
influence of �̃ dominates, and therefore, the excitability de-
creases for positive values of K.

For the vv and vu schemes, the inhibitor receives a feed-
back. In these cases by simply rearranging the inhibitor
equation, the original form of the FHN system without con-
trol, but with new effective parameters, can be obtained.
Therefore no transformation in time and space of the u and v
variables has to be performed. For the two coupling schemes,
for which the activator receives a feedback �uu and uv�, the
equations need to be transformed in order to retain the origi-
nal form without additional control force. In the case of uv,
only the v variable is transformed, whereas in the case of uu
coupling, both dynamic variables u and v and also time and
space are transformed. However, this does not change the
qualitative dynamics of the system since transformations in u
and v variables and in time and space correspond to rescaling
only.

For the two cross-coupling schemes, the effective pa-
rameters are symmetric with respect to K→−K. This sym-
metry of the cross-coupling schemes was observed in the
control domains of all control types �Figs. 4, 6, and 7�.

1. Change in excitability
In this section we clarify the influence of the control

parameter K on the excitability of the system within the ap-
proximation of effective parameters. In particular, the influ-

ence of �̃ and �̃ is investigated since they change for all
control schemes in opposite ways. For vv coupling, the in-

fluence of �̃ dominates and for the other coupling schemes,
the influence of �̃ is decisive.

For the three coupling schemes vv, vu, and uv, the trans-
formations from the original system to that with effective
parameters leave the fixed point invariant, i.e., the fixed point
values with respect to the transformed variables ũ and ṽ are
the same as with respect to the original one �u and v�. Since
the fixed point depends only on � and �, the fact that the
fixed point remains the same supplies a condition how the

effective parameters �̃ and �̃ change in dependence of each
other. The parameters −� and 1 /� define the intersection
with the u axis and the slope of the v-nullcline of the FHN
system, respectively. Thus, for a smaller slope of the
v-nullcline and unchanged fixed point, �̃ has to be increased

and �̃ decreased and vice versa. For the three cases of uv,

vu, and vv, the dependence between �̃ and �̃ yields the con-
dition

�̃��̃� = � + �� − �̃�v�. �13�

It is not intuitively clear how excitability changes. Increasing
�̃ while respecting the invariant fixed point condition given

by Eq. �13�, decreases �̃, which yields two opposing effects
on excitability. In the following it is shown that under the

condition in Eq. �13� the influence of �̃ dominates.
To investigate the influence of simultaneously changing

�̃ and �̃ with unchanged fixed point, numerical simulations
of a single FHN systems with effective parameters are per-
formed under the condition in Eq. �13�. To excite the system
the stimulation current I�t� �inset in Fig. 10� is added to the
activator u. The response of the activator u is determined in
dependence of �̃�K�. Note that these simulations are done

TABLE I. Effective parameters and transformations for coupling schemes
uu, uv, vu, and vv.

uu uv vu vv

t̃ t�1 − K� t t t

x̃ x �1 − K x x x

ũ

u

�1 − K u u u

ṽ
�v − Ku��
�1 − K3 v−K�v�−v� v v

�̃

�

�1 − K�2 �1+K�� �1−K�� �

�̃

�� − �Ku��
�1 − K

� − Ku�

1 + K

� + Ku�

1 − K �+Kv�

�̃ ��1−K�
�

1 + K

�

1 − K �+K
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without feedback. In order to deduce the influence of �̃ and �̃
upon excitability, �̃=�=0.1 is not changed during the simu-
lations. Thus the chosen parameters are equivalent to the
effective parameter set of vv coupling. For the other system
parameters �=0.85 and �=0.5 are chosen.

In Fig. 10 the maximum amplitude umax of the activator
is plotted versus �̃�K�. For �̃�K��−0.05, the response of the
system to the stimulation I�t� has a small amplitude. For
�̃�K��−0.05, the amplitude of the system blows up in a very
tiny parameter range. After this blowup the amplitude re-
mains for all �̃�K��−0.05 at about the same level.

This blowup resembles the canard explosion of the FHN
system near the Hopf bifurcation. The difference is that a
canard transition usually characterizes the fast blowup of
limit cycles, whereas in the case of an excitable system, a
limit cycle does not exist, but only its ghost is visible from
the excited trajectories. However, the result is that increasing

�̃�K� with simultaneously adjusting �̃ according to Eq. �13�
increases the response to a stimulus. We conclude that excit-
ability increases. Therefore it follows that the influence of

decreasing �̃ dominates. Considering the ranges of �̃�K� that
result for the different coupling schemes by varying K in the
interval �1,1� the impact of each effective parameter on the
coupling schemes can be determined.

For the vv coupling scheme, the �̃�K� is in the interval
�0.5, 1.5� for K� �−1,1�. The excitation of the loop leads
to the canardlike blowup close to �̃�K�=−0.05, which is
equivalent to Kvv=−0.55. Hence we estimate for Kvv
=−0.55 a change in excitability. This is in good agreement
with the onset of successful control for time-delayed feed-
back in the spatially extended system �cf. Fig. 7�d��.

For the two cross-coupling schemes uv and vu, the
change in �̃ dominates. �̃�K� lies in the interval �0.25,��.
The values of �̃ for these two schemes are beyond the ca-
nardlike transition, in the region of large amplitudes. For the
investigated values of K, the system does not undergo the
canar-like transition from large to small amplitudes and,

hence, the influence of �̃ and �̃ on the excitability is small.
Therefore the influence of �̃ is decisive. To verify this as-
sumption we estimate the value of Kuv/vu which is necessary
to reach the propagation boundary �P by only considering �̃.
As we know from the numerical computation described in
Sec. II B the propagation boundary �P for �=0.85 and
�=0.5 is reached for �=0.1123. For larger �, a stable pulse
does not exists. Since the simulations were performed for
�=0.1, one can compute the values of Kuv/vu needed to move

from �=0.1 to �̃=0.1123, neglecting the influence of �̃ and
�̃. In the cross-coupling schemes this yields Kuv/vu

= �0.123, which is in very good agreement with the results
from the simulations, where successful suppression is found
for 	Kuv/vu	�0.12.

Performing the same calculation for the uu coupling as-
suming that also in that case the influence of � dominates,
�̃=0.1123 is reached for K=0.056, whereas in the simula-
tions already for K�0.03 successful control was observed,
which is still of the correct order.

2. Shift of propagation boundary
Above we have introduced effective parameters by re-

placing the time-delayed or space-shifted quantities in Eqs.
�12� and �11�, respectively, and have investigated the influ-
ence on excitability for one set of system parameters
��=0.1, �=0.85, and �=0.5� and variable control parameter
�K, 	, and ��. In this section the influence of the effective
parameters on the propagation boundary �P in
�� ,��-parameter space �for �=0.5� is compared to the one
obtained through simulations with time-delayed feedback.
Therefore 	K	=0.2 and �=0.5
t is chosen, where 
t is the
temporal pulse width of the activator u. The sign of the con-
trol parameter K is chosen such that the excitability is de-
creased, namely, negative for vv and vu and positive for uu
and uv.

The propagation boundaries are obtained in two different
ways. Those with time-delayed feedback are obtained by
simulating the full equations and performing a bisection
method. Those propagation boundaries with effective param-
eters are obtained by continuation of homoclinic orbits �sta-
tionary pulse profiles� in the comoving frame.3,49

In Fig. 11 the propagation boundaries �P are shown.
Those obtained with effective parameters are the full lines
separating different colors. The white dashed curves display
the propagation boundaries for the full system with time-
delayed feedback. The boundaries are in good agreement for
vv coupling and the cross-coupling schemes uv and vu. For
uu coupling, the two propagation boundary differs from each
other. The reason is that the effective parameters are exactly
valid for infinitely large � and are still good approximations
for large � but less so for small � as shown in the inset of
Fig. 11.

The inset shows propagation boundaries of the uu cou-
pling. The full line represents �P obtained by effective pa-
rameters. The different thin lines represent the propagation
boundaries obtained by simulating the full system with dif-
ferent time delays. In the range of small � for increasing �,
the displayed propagation boundaries of uu coupling con-
verge toward the propagation boundary of the effective pa-
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FIG. 10. Maximum amplitude umax of activator u after stimulation with I�t�
�inset: solid line�. System parameters: �=0.1, �= �̃�K�, and �= �̃�K�. The
bars below the x-axis mark the ranges for the effective parameter �̃�K� for
vv coupling and the two cross-coupling schemes uv and vu as K is varied in
the range �1,1�.
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rameters. The propagation boundary with �=30
t perfectly
fits the one obtained with effective parameters for ��0.04.
However, for larger �, this boundary �dotted� diverges
sharply from the one with effective parameters. This is
caused by the delay-induced bifurcation that occurs for large
K and � �see Sec. IV B 1�. Figure 8�c� shows the originating
patterns that are already described in Sec. IV B 2. After a
local stimulation, the time-delayed feedback suppresses the
emerging pulse, as predicted by the effective parameters.
However another effect occurs: the feedback is strong
enough to create a delay-induced oscillation. This is due to
the bistability of the local system, where, in addition to the
stable fixed point, a stable and an unstable limit cycle are
born in a saddle-node bifurcation. Each of the excitations can
spread for a small distance until it is again suppressed by the
feedback. Step by step this pattern propagates and grows.

V. DISCUSSION AND CONCLUSION

The increasing interest in both computational investiga-
tions of brain functioning50 and control of complex
dynamics1 has led us to combine methodologies and con-
cepts from both fields to investigate the pathogenesis and
potential treatment of brain disorders.51 This issue sets the
context for our studies. However, we expect that our results
on controlling traveling pulses can find also applications in
other fields of biomedical engineering since traveling pulses
occur in many biological systems.52,53 Furthermore, in this
study we consider models and methods of generic type, i.e.,
on the one side, we study pattern formation in reaction-
diffusion �RD� systems of activator-inhibitor type, namely,
the FitzHugh–Nagumo �FHN� system, on the other side,
stands a universal method of chaos control, that is, time-
delayed feedback �Pyragas control2�, which is used to control
the RD patterns. In addition, we consider nonlocal spatial
coupling as a control method. Nonlocal spatial coupling and
time-delayed feedback have, as we have shown in Sec. IV, a
common mechanism that underlies the control of traveling
pulses.

The discussion will focus on two issues. First, the com-
parison of time-delayed feedback and nonlocal spatial cou-
pling, in particular the predictive power of the effective pa-
rameters that can be introduced in the same manner in both
cases �Sec. V A�. Second, the time-delayed feedback and
nonlocal spatial coupling will be considered from a broader
perspective as augmented transmission capabilities in RD
systems with particular respect to the corresponding cortical
structures �Sec. V B�.

A. Time-delayed feedback and nonlocal spatial
coupling

The control force F�s� in Eq. �11�, i.e., the force in the
anisotropic nonlocal type of coupling with backward connec-
tions, can be directly compared to the control force F�s� in
Eq. �12�, which is time-delayed feedback �Pyragas control�
applied to each element in the active media locally. By going
from Eq. �12� to Eq. �11�, nonlocal connections are intro-
duced simply by changing the position of the shift operator
from the first to the second argument of signal s�x , t�. In
other words, Pyragas control is translated from the temporal
to the spatial domain, as illustrated in Fig. 5. This is compat-
ible because the pulse is stationary in the comoving frame
and thus the speed of the pulse relates space to time scales. If
	 and � are normalized to the pulse width in the spatial and
temporal domain, 
x and 
t, respectively, the common ef-
fect of nonlocal coupling and time-delayed feedback on trav-
eling pulses is reflected in similar locations of the control
domains in the control planes in Figs. 6 and 7.

The analogy between nonlocal coupling and time-
delayed feedback, of course, oversimplifies the situation.
However, the use of both types of coupling has been pro-
posed for control of spatiotemporal chaos in spatially ex-
tended systems based on the idea of stabilization of unstable
periodic patterns embedded in spatiotemporal chaos.54 Using
both types of coupling simultaneously, it has been demon-
strated through numerical analysis that unstable roll patterns
in a transversely extended three-level laser model can be
stabilized. The motivation for this combined approach to
control unstable periodic patterns lies in the noninvasive
character of both nonlocal coupling and time-delayed feed-
back if the unstable periodic patterns are approached. Non-
invasive refers to the fact that the control force vanishes as
the target state is reached.

Our motivation to study nonlocal coupling and time-
delayed feedback is somewhat different from that of chaos
control because we do not want to stabilize unstable periodic
patterns. We investigate the control of traveling pulses by
comparing nonlocal coupling with time-delayed feedback us-
ing both types separately. We suggest a method to predict the
effect of the gain factor K on excitability by identifying the
controlled system with the free system with effective param-
eters based on the idea that the effect of control makes its
main contribution upon the front dynamics. Under this as-
sumption, we suggest to replace in both Eqs. �11� and �12�
the shifted quantities by their fixed point values, i.e.,
s�x , t−��=s�x+	 , t�=s�, where the signal s was chosen to be
either u or v, and s� is the corresponding fixed point value.
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Despite its simplicity, this method yields accurate pre-
dictions for traveling pulses invading the homogeneous
steady state. The resulting equations of effective parameters,
given in Table I, describe by simple algebraic relations how
control changes excitability �Fig. 2�. However, in which di-
rection excitability changes with changing K in the four cou-
pling schemes has to be investigated by evaluating the com-

bined effect on all three effective parameters �̃, �̃, and �̃
�Fig. 10�.

The noteworthy feature of our method is that the effec-
tive parameters describe a shift in the excitability of the local
elements. By investigating time-delayed feedback in a single
local element, it is shown that the onset of pulse suppression
as well as the boundedness of the control domains for large
K and � can be explained by the local dynamics. Further-
more, transferring the results of time-delayed feedback to the
coupling type of anisotropic nonlocal backward coupling,
one finds the same dependences.

B. Reaction-diffusion with augmented transmission
as a hybrid model for the cortex

Control introduces augmented transmission capabilities
in the RD model �Fig. 3�. The resulting hybrid model in Eq.
�5� combines the two major signaling systems in the brain,
namely local coupling by diffusion, termed volume transmis-
sion, and nonlocal coupling in the spatial domain described
by Eqs. �10� and �11� or in the temporal domain by Eq. �12�.
The augmented transmission capabilities are typical for syn-
aptic transmission and neurovascular coupling. For example,
the change in sign in the gain parameter K for pulse suppres-
sion �Figs. 4�b� and 4�c�� is reminiscent of the Mexican-hat
type functional and structural connectivity pattern in the cor-
tex. Also time delays of the order of seconds, that is, the
order of the width of the pulse profile 
t in spreading depo-
larizations �SDs�, can occur in synaptic transmission if me-
tabotropic ion channels are involved, such as metabotropic
glutamate receptors, which have increased open probabilities
in the range of seconds after their activation. Moreover, typi-
cal latencies of this order result from the neurovascular cou-
pling. Therefore, the augmented transmission capabilities
represent internal neural circuitry that is complementary to
the volume transmission introduced in the original Hodgkin–
Grafstein equations �Eqs. �1� and �2�� as a model for SDs.

The first hybrid model for SDs that also combines the
two major signaling systems in the brain has been studied by
Reggia and Montgomery.55 In this study, potassium dynam-
ics was modeled by a quadratic rate function �cf. Eq. �2�� and
coupled to a neural network that mimics cortical dynamics
and sensory map organization. At the leading edge of the
simulated potassium pulse, the elsewhere largely uniform
neural activity was replaced by a pattern of small, irregular
patches and lines of highly active elements. The authors ex-
plain with this irregular pattern the shape of neurological
symptoms in the visual field, as described in migraine pa-
tients’ reports. However, there is no feedback of the network
activity to the potassium RD pulse. Therefore these hybrid
models cannot address the questions of the controversially
discussed Hodgkin–Grafstein mechanism56,57 because the

augmented transmission capabilities work only one way. In a
more general context, such hybrid models are similar to cre-
ation of spatiotemporal networks in addressable excitable
media, which are studied in the chemical Belousov–
Zhabotinskii reaction.58

Volume transmission described by the Hodgkin–
Grafstein mechanism was long thought to be the main factor
that causes the propagation in SDs �Ref. 56� although syn-
aptic transmission and gap junction coupling were suggested
to provide an alternative mechanism.57,59 Hybrid models can
address these controversial issue and may help to provide
insights into the spread and control of pathological pulses in
the brain. Our emphasis is on understanding the role of in-
ternal cortical circuits that provide augmented transmission
capabilities and can prevent such events. However, a long-
term biomedical engineering therapeutic aim is also to de-
sign strategies that either support the internal cortical control
or mimic its behavior by external control loops and translate
these methods into applications.
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