1,802 research outputs found
Stellar Differential Rotation and Coronal Timescales
We investigate the timescales of evolution of stellar coronae in response to
surface differential rotation and diffusion. To quantify this we study both the
formation time and lifetime of a magnetic flux rope in a decaying bipolar
active region. We apply a magnetic flux transport model to prescribe the
evolution of the stellar photospheric field, and use this to drive the
evolution of the coronal magnetic field via a magnetofrictional technique.
Increasing the differential rotation (i.e. decreasing the equator-pole lap
time) decreases the flux rope formation time. We find that the formation time
is dependent upon the geometric mean of the lap time and the surface diffusion
timescale. In contrast, the lifetime of flux ropes are proportional to the lap
time. With this, flux ropes on stars with a differential rotation of more than
eight times the solar value have a lifetime of less than two days. As a
consequence, we propose that features such as solar-like quiescent prominences
may not be easily observable on such stars, as the lifetimes of the flux ropes
which host the cool plasma are very short. We conclude that such high
differential rotation stars may have very dynamical coronae
3D mapping of young stars in the solar neighbourhood with Gaia DR2
We study the three dimensional arrangement of young stars in the solar
neighbourhood using the second release of the Gaia mission (Gaia DR2) and we
provide a new, original view of the spatial configuration of the star forming
regions within 500 pc from the Sun. By smoothing the star distribution through
a gaussian filter, we construct three dimensional density maps for early-type
stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS
and the UMS samples are selected through a combination of photometric and
astrometric criteria. A side product of the analysis is a three dimensional,
G-band extinction map, which we use to correct our colour-magnitude diagram for
extinction and reddening. Both density maps show three prominent structures,
Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass
star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and
Lacerta, which are less visible in the UMS map, due to the lack of large
numbers of bright, early-type stars. We report the finding of a candidate new
open cluster towards , which could be
related to the Orion star forming complex. We estimate ages for the PMS sample
and we study the distribution of PMS stars as a function of their age. We find
that younger stars cluster in dense, compact clumps, and are surrounded by
older sources, whose distribution is instead more diffuse. The youngest groups
that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus.
Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous.
Finally, we find that the three dimensional density maps show no evidence for
the existence of the ring-like structure which is usually referred to as the
Gould Belt.Comment: 17 pages, 17 figures, 6 appendixes; accepted for publication in A&A;
image quality decreased to comply with the arXiv.org rules on file siz
Is pollen size a robust proxy for moisture availability?
The development of well-constrained palaeo-proxies that enable the reconstruction of past climate change is becoming an ever more important field of scientific enquiry within the palaeobotanical community, with the potential to deliver broader impacts linked to understanding of future anthropogenic climate change. One of the major uncertainties in predicting climate change is how the hydrological cycle will respond to future warming. Griener and Warny (2015, Review of Palaeobotany and Palynology 221, 138-143) suggested that pollen size might be a useful proxy for tracking moisture availability, as pollen size appears to be negatively correlated with moisture. Given the long fossil record of pollen and spores such a proxy would have broad scope and the potential to deliver much needed information. Here we set out to fully evaluate and test the robustness of this proxy. We focus on a number of a key issues: controls on pollen size, data analysis, and finally proxy validation. Using this approach we find that there is little theoretical or empirical support for the original relationship proposed by Griener and Warny. Consequently it is currently premature to use pollen size as a moisture availability proxy in the fossil record. However, we recognise that the technique may have potential and conclude by offering a series of recommendations that would rigorously assess and test for a relationship between pollen size and moisture availability
Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease
Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake
Principal infinity-bundles - General theory
The theory of principal bundles makes sense in any infinity-topos, such as
that of topological, of smooth, or of otherwise geometric
infinity-groupoids/infinity-stacks, and more generally in slices of these. It
provides a natural geometric model for structured higher nonabelian cohomology
and controls general fiber bundles in terms of associated bundles. For suitable
choices of structure infinity-group G these G-principal infinity-bundles
reproduce the theories of ordinary principal bundles, of bundle
gerbes/principal 2-bundles and of bundle 2-gerbes and generalize these to their
further higher and equivariant analogs. The induced associated infinity-bundles
subsume the notions of gerbes and higher gerbes in the literature.
We discuss here this general theory of principal infinity-bundles, intimately
related to the axioms of Giraud, Toen-Vezzosi, Rezk and Lurie that characterize
infinity-toposes. We show a natural equivalence between principal
infinity-bundles and intrinsic nonabelian cocycles, implying the classification
of principal infinity-bundles by nonabelian sheaf hyper-cohomology. We observe
that the theory of geometric fiber infinity-bundles associated to principal
infinity-bundles subsumes a theory of infinity-gerbes and of twisted
infinity-bundles, with twists deriving from local coefficient infinity-bundles,
which we define, relate to extensions of principal infinity-bundles and show to
be classified by a corresponding notion of twisted cohomology, identified with
the cohomology of a corresponding slice infinity-topos.
In a companion article [NSSb] we discuss explicit presentations of this
theory in categories of simplicial (pre)sheaves by hyper-Cech cohomology and by
simplicial weakly-principal bundles; and in [NSSc] we discuss various examples
and applications of the theory.Comment: 46 pages, published versio
Linewidths in bound state resonances for helium scattering from Si(111)-(1x1)H
Helium-3 spin-echo measurements of resonant scattering from the Si(111)ā(1 Ć 1)H surface, in the energy range 4ā14 meV, are presented. The measurements have high energy resolution yet they reveal bound state resonance features with uniformly broad linewidths. We show that exact quantum mechanical calculations of the elastic scattering, using the existing potential for the helium/Si(111)ā(1 Ć 1)H interaction, cannot reproduce the linewidths seen in the experiment. Further calculations rule out inelastic and other mechanisms that might give rise to losses from the elastic scattering channels. We show that corrugation in the attractive part of the atomāsurface potential is the most likely origin of the experimental lineshapes
Ginkgo leaf cuticle chemistry across changing pCO2 regimes
Cuticles have been a key part of palaeobotanical research since the mid-19th Century. Recently, cuticular research has moved beyond morphological traits to incorporate the chemical signature of modern and fossil cuticles, with the aim of using this as a taxonomic and classification tool. For this approach to work, cuticle chemistry would have to maintain a strong taxonomic signal, with a limited input from the ambient environment in which the plant grew. Here, we use attenuated total reflectance Fourier Transform infrared (ATR-FTIR) spectroscopy to analyse leaf cuticles from Ginkgo biloba plants grown in experimentally enhanced CO2 conditions, to test for the impact of changing CO2 regimes on cuticle chemistry. We find limited evidence for an impact of CO2 on the chemical signature of Ginkgo cuticles, with more pronounced differences demonstrated between the abaxial (lower leaf surface) and adaxial (upper leaf surface) cuticles. These findings support the use of chemotaxonomy for plant cuticular remains across geological timescales, and the concomitant large-scale variations in CO2 concentrations
Simulation and analysis of solenoidal ion sources
We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source
- ā¦