6,120 research outputs found
Adventures in Holographic Dimer Models
We abstract the essential features of holographic dimer models, and develop
several new applications of these models. First, semi-holographically coupling
free band fermions to holographic dimers, we uncover novel phase transitions
between conventional Fermi liquids and non-Fermi liquids, accompanied by a
change in the structure of the Fermi surface. Second, we make dimer vibrations
propagate through the whole crystal by way of double trace deformations,
obtaining nontrivial band structure. In a simple toy model, the topology of the
band structure experiences an interesting reorganization as we vary the
strength of the double trace deformations. Finally, we develop tools that would
allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard
model.Comment: 22 pages, 8 figures; v2: brief description of case of pure D5 lattice
added in sec.3; v3: minor typo fixed; v4: minor change
Narrative, identity, and recovery from serious mental illness: A life history of a runner
In recent years, researchers have investigated the psychological effects of exercise for people with mental health problems, often by focusing on how exercise may alleviate symptoms of mental illness. In this article I take a different tack to explore the ways in which exercise contributed a sense of meaning, purpose, and identity to the life of one individual named Ben, a runner diagnosed with schizophrenia. Drawing on life history data, I conducted an analysis of narrative to explore the narrative types that underlie Ben's stories of mental illness and exercise. For Ben, serious mental illness profoundly disrupted a pre-existing athletic identity removing agency, continuity, and coherence from his life story. By returning to exercise several years later, Ben reclaimed his athletic identity and reinstated some degree of narrative agency, continuity, and coherence. While the relationships between narrative, identity, and mental health are undoubtedly complex, Ben's story suggests that exercise can contribute to recovery by being a personally meaningful activity which reinforces identity and sense of self
Permeability control on transient slip weakening during gypsum dehydration: Implications for earthquakes in subduction zones
© 2016 The Authors.A conflict has emerged from recent laboratory experiments regarding the question of whether or not dehydration reactions can promote unstable slip in subduction zones leading to earthquakes. Although reactions produce mechanical weakening due to pore-fluid pressure increase, this weakening has been associated with both stable and unstable slip. Here, new results monitoring strength, permeability, pore-fluid pressure, reaction progress and microstructural evolution during dehydration reactions are presented to identify the conditions necessary for mechanical instability. Triaxial experiments are conducted using gypsum and a direct shear sample assembly with constant normal stress that allows the measurement of permeability during sliding. Tests are conducted with temperature ramp from 70 to 150 °C and with different effective confining pressures (50, 100 and 150 MPa) and velocities (0.1 and 0.4 μm s-1). Results show that gypsum dehydration to bassanite induces transient stable-slip weakening that is controlled by pore-fluid pressure and permeability evolution. At the onset of dehydration, the low permeability promoted by pore compaction induces pore-fluid pressure build-up and stable slip weakening. The increase of bassanite content during the reaction shows clear evidence of dehydration related with the development of R1 Riedel shears and P foliation planes where bassanite is preferentially localized along these structures. The continued production of bassanite, which is stronger than gypsum, provides a supporting framework for newly formed pores, thus resulting in permeability increase, pore-fluid pressure drop and fault strength increase. After dehydration reaction, deformation is characterized by unstable slip on the fully dehydrated reaction product, controlled by the transition from velocity-strengthening to velocity-weakening behaviour of bassanite at temperature above ~140 °C and the localization of deformation along narrow Y-shear planes. This study highlights the generic conditions required to trigger instabilities during dehydration reactions. It shows that pore-fluid pressure build-up during dehydration reactions associated with the localization of a velocity-weakening reacting or dehydrated phase along shear planes is necessary for earthquake triggering
Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory
Electronic structure calculations performed on very large supercells have
shown that the local charge excesses in metallic alloys are related through
simple linear relations to the local electrostatic field resulting from
distribution of charges in the whole crystal.
By including local external fields in the single site Coherent Potential
Approximation theory, we develop a novel theoretical scheme in which the local
charge excesses for random alloys can be obtained as the responses to local
external fields. Our model maintains all the computational advantages of a
single site theory but allows for full charge relaxation at the impurity sites.
Through applications to CuPd and CuZn alloys, we find that, as a general rule,
non linear charge rearrangements occur at the impurity site as a consequence of
the complex phenomena related with the electronic screening of the external
potential. This nothwithstanding, we observe that linear relations hold between
charge excesses and external potentials, in quantitative agreement with the
mentioned supercell calculations, and well beyond the limits of linearity for
any other site property.Comment: 11 pages, 1 table, 7 figure
Persistent Current of Free Electrons in the Plane
Predictions of Akkermans et al. are essentially changed when the Krein
spectral displacement operator is regularized by means of zeta function.
Instead of piecewise constant persistent current of free electrons on the plane
one has a current which varies linearly with the flux and is antisymmetric with
regard to all time preserving values of including . Different
self-adjoint extensions of the problem and role of the resonance are discussed.Comment: (Comment on "Relation between Persistent Currents and the Scattering
Matrix", Phys. Rev. Lett. {\bf 66}, 76 (1991)) plain latex, 4pp., IPNO/TH
94-2
Dichotomous mechanistic behaviour in Narasaka-Heck cyclizations: electron rich Pd-catalysts generate iminyl radicals
Pd-catalyzed cyclizations of oxime esters with pendant alkenes undergo ligand controlled mechanistic divergence. Electron deficient phosphines promote aza-Heck cyclization; electron rich systems favour a SET pathway. Mechanistic experiments differentiate the two manifolds.</p
Aircraft requirements for low/medium density markets
A study was conducted to determine the demand for and the economic factors involved in air transportation in a low and medium density market. The subjects investigated are as follows: (1) industry and market structure, (2) aircraft analysis, (3) economic analysis, (4) field surveys, and (5) computer network analysis. Graphs are included to show the economic requirements and the aircraft performance characteristics
Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3
We present a new method for modeling disordered solid solutions, based on the
virtual crystal approximation (VCA). The VCA is a tractable way of studying
configurationally disordered systems; traditionally, the potentials which
represent atoms of two or more elements are averaged into a composite atomic
potential. We have overcome significant shortcomings of the standard VCA by
developing a potential which yields averaged atomic properties. We perform the
VCA on a ferroelectric oxide, determining the energy differences between the
high-temperature rhombohedral, low-temperature rhombohedral and tetragonal
phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to
superlattice calculations and experiment. We then use our new method to
determine the preferred structural phase at x=0.4. We find that the
low-temperature rhombohedral phase becomes the ground state at x=0.4, in
agreement with experimental findings.Comment: 5 pages, no figure
Holographic Aspects of Fermi Liquids in a Background Magnetic Field
We study the effects of an external magnetic field on the properties of the
quasiparticle spectrum of the class of 2+1 dimensional strongly coupled
theories holographically dual to charged AdS black holes at zero
temperature. We uncover several interesting features. At certain values of the
magnetic field, there are multiple quasiparticle peaks representing a novel
level structure of the associated Fermi surfaces. Furthermore, increasing
magnetic field deforms the dispersion characteristics of the quasiparticle
peaks from non-Landau toward Landau behaviour. At a certain value of the
magnetic field, just at the onset of Landau-like behaviour of the Fermi liquid,
the quasiparticles and Fermi surface disappear.Comment: 18 pages, 10 figures. Revised some of the terminology: changed
non-separable solutions to infinite-sum solution
Mixed RG Flows and Hydrodynamics at Finite Holographic Screen
We consider quark-gluon plasma with chemical potential and study
renormalization group flows of transport coefficients in the framework of
gauge/gravity duality. We first study them using the flow equations and compare
the results with hydrodynamic results by calculating the Green functions on the
arbitrary slice. Two results match exactly. Transport coefficients at arbitrary
scale is ontained by calculating hydrodynamics Green functions. When either
momentum or charge vanishes, transport coefficients decouple from each other.Comment: 22 pages, 6 figure
- …