556 research outputs found

    Electronic transport in Si:P delta-doped wires

    Full text link
    Despite the importance of Si:P delta-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a delta-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of delta-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of delta-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a delta-doped wire, which we find to be at least 4.6 nm.Comment: 13 pages, 11 figure

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    Mobility of normal and virus-transformed cells in cellular aggregates.

    Full text link

    Sorting out of normal and virus-transformed cells in cellular aggregates.

    Full text link

    Ab initio calculation of energy levels for phosphorus donors in silicon

    Get PDF
    The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modeling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron’s ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T 2) and 1s(E) states, finding them to be 32 and 31 meV respectively

    Ab initio calculation of energy levels for phosphorus donors in silicon

    Get PDF
    The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modeling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density functional theory. The wavefunction of the donor electron’s ground state is found to have a form that is similar to an atomic s orbital, with an effective Bohr radius of 1.8 nm. The corresponding binding energy of this state is found to be 41 meV, which is in good agreement with the currently accepted value of 45.59 meV. We also calculate the energies of the excited 1s(T 2) and 1s(E) states, finding them to be 32 and 31 meV respectively

    Determining the Electronic Confinement of a Subsurface Metallic State

    Get PDF
    Dopant profiles in semiconductors are important for understanding nanoscale electronics. Highly conductive and extremely confined phosphorus doping profiles in silicon, known as Si:P δ-layers, are of particular interest for quantum computer applications, yet a quantitative measure of their electronic profile has been lacking. Using resonantly enhanced photoemission spectroscopy, we reveal the real-space breadth of the Si:P δ-layer occupied states and gain a rare view into the nature of the confined orbitals. We find that the occupied valley-split states of the δ-layer, the so-called 1Γ and 2Γ, are exceptionally confined with an electronic profile of a mere 0.40 to 0.52 nm at full width at half-maximum, a result that is in excellent agreement with density functional theory calculations. Furthermore, the bulk-like Si 3pz orbital from which the occupied states are derived is sufficiently confined to lose most of its pz-like character, explaining the strikingly large valley splitting observed for the 1Γ and 2Γ states

    The evolution of the ISOLDE control system

    Get PDF
    The ISOLDE on-line mass separator facility is operating on a Personal Computer based control system since spring 1992. Front End Computers accessing the hardware are controlled from consoles running Microsoft WindowsTM through a Novell NetWare4TM local area network. The control system is transparently integrated in the CERN wide office network and makes heavy use of the CERN standard office application programs to control and to document the running of the ISOLDE isotope separators. This paper recalls the architecture of the control system, shows its recent developments and gives some examples of its graphical user interface

    公众参与消防安全建设:路径选择与制度供给

    Get PDF
    消防安全是公共安全的重要组成部分,公众参与消防安全建设是消防安全管理工作的内在需求和必然趋势。积极探索公众参与消防安全建设的具体路径,为公民参与消防建设提供制度保障是当前消防管理工作的重要课题。本文力图从消防政策的制定与监督、社会化的消防工作网络、依托社会的消防教育三个方面构建以政府为主导的公民参与消防安全建设的路径,并为这些参与途径设计了以信息公开及法制建设为基础,以增强民间组织参与能力为目标,以经济、文化等各种手段为支持的公众参与消防建设的制度框架
    corecore